The platform will undergo maintenance on Sep 14 at about 7:45 AM EST and will be unavailable for approximately 2 hours.
2021
DOI: 10.1016/j.jcp.2021.110669
|View full text |Cite
|
Sign up to set email alerts
|

An advanced boundary integral equation method for wave propagation analysis in a layered piezoelectric phononic crystal with a crack or an electrode

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2
1

Relationship

2
6

Authors

Journals

citations
Cited by 16 publications
(9 citation statements)
references
References 49 publications
0
8
0
1
Order By: Relevance
“…Let us consider wave excitation in the wedge by the rectangular piezoelectric actuator with an intermediate laminated rectangular EMM block as schematically shown by a dashed circle in Figure 1 . In the present study, we employ the boundary integral equation method [ 29 , 32 , 33 ], the semi-analytical hybrid approach [ 34 , 35 ] and the finite element method to solve the boundary-value problem described in the following subsection.…”
Section: Formulation Of the Problemmentioning
confidence: 99%
See 1 more Smart Citation
“…Let us consider wave excitation in the wedge by the rectangular piezoelectric actuator with an intermediate laminated rectangular EMM block as schematically shown by a dashed circle in Figure 1 . In the present study, we employ the boundary integral equation method [ 29 , 32 , 33 ], the semi-analytical hybrid approach [ 34 , 35 ] and the finite element method to solve the boundary-value problem described in the following subsection.…”
Section: Formulation Of the Problemmentioning
confidence: 99%
“…Wave-field in the layered waveguide with regular boundaries is obtained in the integral form using the Fourier transform of the Green’s matrix of the layered structure and a load generated by the transducer [ 34 , 35 ]. The employed numerical algorithm for the evaluation of the Green’s matrix of layered elastic structures including periodic ones can be found in [ 33 , 46 ].…”
Section: Transducer With Emm Intermediate Without Voidsmentioning
confidence: 99%
“…内嵌式压电/弹性复合材料型压电声子晶体与超材料(下文同样简称为压电/弹性声子晶体或超 材料) 指的是将压电材料作为声子晶体/超材料的散射体或基体, 根据其周期性可以将其分为一维 [23] 、 二维 [6] 和三维体系 [24] ,如图 1(b)所示。 2004 年,Qian 等人 [25] 研究了反平面 SH 波在一维压电/弹性声子晶体中的传播特性,重点分析 了周期结构的滤波效应,以及压电/弹性材料的体积比和剪切模量比对相速度的影响。随后,一些 研究工作指出通过改变力学、 电学界面条件 [26,27] 或施加预应力的方式 [28] 可以调节弹性波在一维压电 /弹性声子晶体中的传播性质。除了这些层状结构,Li 和 Guo [29] 研究了压电/弹性材料组成的杆中 纵波的传播特性。对于压电/弹性材料组成的声子晶体杆,Degraeve 等人 [30] 研究了压电/弹性材料组 合形成的声子晶体杆内弹性波的传播特性;Parra 等人 [24] 将分流电路接在压电材料两端使得带隙中 Fomenko 等人 [34] 亦对一维叠层压电/弹性声子晶体中界面缺陷对于弹性波传播的影响进行了理论和 数值研究。 与一维体系相比,二维和三维压电/弹性声子晶体的能带结构较为复杂。Hou 等人 [6] 于 2004 年 利用平面波展开法计算得到了压电散射体/聚合物基体的二维压电/弹性声子晶体的能带结构,其研 究结果表明当散射体的填充率较大时压电效应才可以显著地提升弹性波带隙的宽度。随后,Wang 等人 [35,36] 针对不同形状散射体和不同晶格形式的二维压电/弹性声子晶体开展了理论研究,详细讨 论了声子晶体各个参数对弹性波带隙的影响。Miranda Jr.等人 [37] 利用压电材料作为圆形散射体制成 了二维压电声子晶体。Li 等人 [38] 研究了随机失谐(包括散射体的位置和尺寸失谐)对二维压电/弹 性声子晶体弹性波带隙的影响。最近,Wang 等人 [39] 利用 Petrov-Galerkin 有限元法计算得到了具有 复杂形状散射体的二维压电/弹性声子晶体的能带结构。 对于三维压电/弹性声子晶体,Wang 等人 [25] 于 2009 年利用平面波展开法计算得到了三维面心 立方压电/弹性声子晶体的能带结构,分别讨论了压电散射体/聚合物基体、以及聚合物散射体/压电 基体两种声子晶体形式。其结果显示,将压电球置于聚合物基体内可以产生较宽的弹性波带隙,而 且带隙的位置和宽度可以通过材料的压电性质进行调节。随后,他们研究了具有预应力的三维压电 /弹性声子晶体的能带结构,并指出弹性波带隙的上下边界可以通过施加不同的预应力进行调节 [40] 。 复合压电声子晶体或超材料 [7] ,如图 1(c)和 4(a)所示。相较于前面介绍的单一压电、内嵌压电材料 的声子晶体/超材料,这种压电复合机构的分析更为复杂,需要同时考虑压电或力电耦合效应以及 外接电路对于弹性波的影响。为了提高分析和计算效率,学者们提出了一些简化的模型用来理论或 数值计算弹性波的传播特性。其中最常用的是由 Hagood 和 Flotow [45] 基于压电片内应变和电极上的…”
Section: 内嵌式压电/弹性复合材料型压电声子晶体与超材料unclassified
“…Advanced boundary integral equations method may also be used for the wave propagation problem solution. Using this method the problem for layered piezoelectric phononic crystals with cracks was solved in [16]. Integral equations with hypersingular kernels were applied for the solution of fracture mechanics problems in [17].…”
Section: Introductionmentioning
confidence: 99%