2020
DOI: 10.1109/access.2020.3020140
|View full text |Cite
|
Sign up to set email alerts
|

An Adaptive Distributed Compressed Video Sensing Algorithm Based on Normalized Bhattacharyya Coefficient for Coal Mine Monitoring Video

Abstract: Compared with traditional video surveillance systems, wireless video sensor systems are more suitable for emergency application scenarios, such as underground coal mine disaster rescue, due to their low power consumption and rapid deployment. Considering the limited computing power and transmission bandwidth of video sensor nodes, we propose an adaptive compression and hybrid multiple hypothesis based residual reconstruction algorithm based on normalized Bhattacharyya coefficient (NBCAC-MHRR) to solve the high… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 24 publications
0
2
0
Order By: Relevance
“…There is a vast literature on very recent applications of the Bhattacharyya coefficient, for instance it appears exemplarily in Peng & Li [289] for object tracking from successive video frames, Ayed et al [26] for efficient graph cut algorithms, Patra et al [287] for collaborative filtering in sparse data, El Merabet et al [119] for region classification in intelligent transport systems in order to compensate the lack of performance of Global Navigation Satellites Systems, Chiu et al [86] for the design of interactive mobile augmented reality systems, Noh et al [274] for dimension reduction in interacting fluid flow models, Bai et al [29] for material defect detection through ultrasonic array imaging, Dixit & Jain [115] for the design of recommender systems on highly sparse context aware datasets, Guan et al [143] for visible light positioning methods based on image sensors, Lin et al [220] for probabilistic representation of color image pixels, Chen et al [80] for distributed compressive video sensing, Jain et al [162] for the enhancement of multistage user-based collaborative filtering in recommendation systems, Pascuzzo et al [285] for brain-diffusion-MRI based early diagnosis of the sporadic Creutzfeldt-Jakob disease, Sun et al [351] for the design of automatic detection methods multitemporal (e.g. landslide) point clouds, Valpione et al [377] for the investigation of T cell dynamics in immunotherapy, Wang et al [387] for the tracking and prediction of downbursts from meteorological data, Xu et al [403] for adaptive distributed compressed video sensing for coal mine monitoring, Zhao et al [424] for the shared sparse machine learning of the affective content of images, Chen et al [82] for image segmentation and domain partitioning, De Oliveira et al [105] for the prediction of cell-penetrating peptides, Eshaghi et al [122] for the identification of multiple sclerosis subtypes through machine learning of brain MRI scans, Feng et al [125] for improvements of MRI-based detection of epilepsy-causing cortical malformations, Hanli et al [153] for designing pilot protection schemes for transmission lines, Jiang et al [170] for flow-assisted visual tracking through event cameras, Lysiak & Szmajda …”
Section: ) Construction Principle For the Estimation Of The Minimum D...mentioning
confidence: 99%
“…There is a vast literature on very recent applications of the Bhattacharyya coefficient, for instance it appears exemplarily in Peng & Li [289] for object tracking from successive video frames, Ayed et al [26] for efficient graph cut algorithms, Patra et al [287] for collaborative filtering in sparse data, El Merabet et al [119] for region classification in intelligent transport systems in order to compensate the lack of performance of Global Navigation Satellites Systems, Chiu et al [86] for the design of interactive mobile augmented reality systems, Noh et al [274] for dimension reduction in interacting fluid flow models, Bai et al [29] for material defect detection through ultrasonic array imaging, Dixit & Jain [115] for the design of recommender systems on highly sparse context aware datasets, Guan et al [143] for visible light positioning methods based on image sensors, Lin et al [220] for probabilistic representation of color image pixels, Chen et al [80] for distributed compressive video sensing, Jain et al [162] for the enhancement of multistage user-based collaborative filtering in recommendation systems, Pascuzzo et al [285] for brain-diffusion-MRI based early diagnosis of the sporadic Creutzfeldt-Jakob disease, Sun et al [351] for the design of automatic detection methods multitemporal (e.g. landslide) point clouds, Valpione et al [377] for the investigation of T cell dynamics in immunotherapy, Wang et al [387] for the tracking and prediction of downbursts from meteorological data, Xu et al [403] for adaptive distributed compressed video sensing for coal mine monitoring, Zhao et al [424] for the shared sparse machine learning of the affective content of images, Chen et al [82] for image segmentation and domain partitioning, De Oliveira et al [105] for the prediction of cell-penetrating peptides, Eshaghi et al [122] for the identification of multiple sclerosis subtypes through machine learning of brain MRI scans, Feng et al [125] for improvements of MRI-based detection of epilepsy-causing cortical malformations, Hanli et al [153] for designing pilot protection schemes for transmission lines, Jiang et al [170] for flow-assisted visual tracking through event cameras, Lysiak & Szmajda …”
Section: ) Construction Principle For the Estimation Of The Minimum D...mentioning
confidence: 99%
“…Video surveillance is becoming now a days increasingly important in the fight against crime and the protection of public safety. It is also being used for a variety of other purposes, such as security monitoring, fraud detection, compliance, flood-survey during natural calamities, coal mining surveillance and many more applications [1][2]. In the older times, only static CCTV or any static devices were used for surveillance applications.…”
Section: Introductionmentioning
confidence: 99%
“…In the early stage, Ikeda et al employed advanced communication technology to support emergency rescue and proposed an emergency rescue model [4]. In recent years, wireless sensing communication technology has greatly improved the emergency management level of coal mine accidents [5]. In addition to improving the incidence of coal mine accidents at various technical levels [6,7], the organizational management factors of coal mine accidents are gradually being paid attention to.…”
Section: Introductionmentioning
confidence: 99%