2011
DOI: 10.1039/c1cp21244c
|View full text |Cite
|
Sign up to set email alerts
|

An abiotic analogue of the diiron(iv)oxo “diamond core” of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(ii)/EDTA solutions: thermodynamics and electronic structure

Abstract: We study the generation of a dinuclear Fe(IV)oxo species, [EDTAH·FeO·OFe·EDTAH](2-), in aqueous solution at room temperature using Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD). This species has been postulated as an intermediate in the multi-step mechanism of autoxidation of Fe(II) to Fe(III) in the presence of atmospheric O(2) and EDTA ligand in water. We examine the formation of [EDTAH·FeO·OFe·EDTAH](2-) by direct cleavage of O(2), and the effects of solvation on the spin state and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
25
0

Year Published

2014
2014
2022
2022

Publication Types

Select...
7
1

Relationship

3
5

Authors

Journals

citations
Cited by 15 publications
(26 citation statements)
references
References 105 publications
(160 reference statements)
1
25
0
Order By: Relevance
“…Theoretical studies of such biomimetic models may not only identify the key elements that determine their chemical reactivities, but may also provide insight into intermediates and reactivities of parent enzymes (Shaik et al, 2007a; de Visser et al, 2013). To date, DFT calculations have been applied extensively to various types of non-heme iron species (Scheme 1) (Bassan et al, 2002, 2005a,b; Roelfes et al, 2003; Decker and Solomon, 2005; Kumar et al, 2005; Quinonero et al, 2005; Berry et al, 2006; Bernasconi et al, 2007, 2011; de Visser, 2006, 2010; Hirao et al, 2006a, 2008a,b, 2011; Rohde et al, 2006; Decker et al, 2007; de Visser et al, 2007, 2011; Johansson et al, 2007; Noack and Siegbahn, 2007; Sastri et al, 2007; Sicking et al, 2007; Bernasconi and Baerends, 2008, 2013; Comba et al, 2008; Dhuri et al, 2008; Fiedler and Que, 2009; Klinker et al, 2009; Wang et al, 2009a, 2013b; Cho et al, 2010, 2012a, 2013; Geng et al, 2010; Chen et al, 2011; Chung et al, 2011b; Seo et al, 2011; Shaik et al, 2011; Vardhaman et al, 2011; Wong et al, 2011; Ye and Neese, 2011; Gonzalez-Ovalle et al, 2012; Gopakumar et al, 2012; Latifi et al, 2012; Mas-Ballesté et al, 2012; McDonald et al, 2012; Van Heuvelen et al, 2012; Ansari et al, 2013; Kim et al, 2013; Lee et al, 2013; Sahu et al, 2013; Tang et al, 2013; Ye et al, 2013; Hong et al, 2014; Sun et al, 2014). The intriguing reactivity patterns of these complexes are the result of active involvement of electrons in d-type MOs, which gives rise to multi-state scenarios (Shaik et al, 1998; Schröder et al, 2000; Schwarz, 2011).…”
Section: Applications Of Dftmentioning
confidence: 99%
“…Theoretical studies of such biomimetic models may not only identify the key elements that determine their chemical reactivities, but may also provide insight into intermediates and reactivities of parent enzymes (Shaik et al, 2007a; de Visser et al, 2013). To date, DFT calculations have been applied extensively to various types of non-heme iron species (Scheme 1) (Bassan et al, 2002, 2005a,b; Roelfes et al, 2003; Decker and Solomon, 2005; Kumar et al, 2005; Quinonero et al, 2005; Berry et al, 2006; Bernasconi et al, 2007, 2011; de Visser, 2006, 2010; Hirao et al, 2006a, 2008a,b, 2011; Rohde et al, 2006; Decker et al, 2007; de Visser et al, 2007, 2011; Johansson et al, 2007; Noack and Siegbahn, 2007; Sastri et al, 2007; Sicking et al, 2007; Bernasconi and Baerends, 2008, 2013; Comba et al, 2008; Dhuri et al, 2008; Fiedler and Que, 2009; Klinker et al, 2009; Wang et al, 2009a, 2013b; Cho et al, 2010, 2012a, 2013; Geng et al, 2010; Chen et al, 2011; Chung et al, 2011b; Seo et al, 2011; Shaik et al, 2011; Vardhaman et al, 2011; Wong et al, 2011; Ye and Neese, 2011; Gonzalez-Ovalle et al, 2012; Gopakumar et al, 2012; Latifi et al, 2012; Mas-Ballesté et al, 2012; McDonald et al, 2012; Van Heuvelen et al, 2012; Ansari et al, 2013; Kim et al, 2013; Lee et al, 2013; Sahu et al, 2013; Tang et al, 2013; Ye et al, 2013; Hong et al, 2014; Sun et al, 2014). The intriguing reactivity patterns of these complexes are the result of active involvement of electrons in d-type MOs, which gives rise to multi-state scenarios (Shaik et al, 1998; Schröder et al, 2000; Schwarz, 2011).…”
Section: Applications Of Dftmentioning
confidence: 99%
“…Therefore, the goal of this work is to address these limitations by examining the influence of exchange-correlation functional choice specifically on the predicted reactivity of MOF-74 supported Fe(IV)O. We show that conventional generalisedgradient approximations (GGAs), like PBE 24 and BLYP, 25,26 which typically provide an accurate description both of the structural/ vibrational properties of MOFs 27 and of Fe(IV)O catalysed hydroxylation reactions in the gas phase and in aqueous solution 28,29 yield a qualitatively incorrect description of the H-abstraction reaction profile from methane in the solid state. We attribute this failure to the self-interaction error (SIE) affecting these functionals, which brings about a spurious mixing between reactant (CH 4 ) orbitals and extended MOF-74 states.…”
Section: Introductionmentioning
confidence: 99%
“…By contrast, single-state (quintet) reactivity has been observed in Fe(IV)O complexes in the gas phase and in water solution. 31 A more detailed analysis of two-(or multi-) state reactivity for Fe(IV)O/ MOF-74 (which can affect, inter alia, the mechanism and rate constant of the hydroxylation reaction 58 ) will be presented elsewhere. Future work will also be devoted to studying the effect of the exchange-correlation approximation on the electronic structure and on the reactivity of Fe(IV)O/MOF-74 as well as to compute free-energies of reaction at room temperature.…”
Section: Discussionmentioning
confidence: 99%
“…The ability of Fe(IV)O complexes to oxidise methane in aqueous solution has also been examined, and the presence of the solvent has been shown to play a crucial role in favouring the reaction. [31][32][33] In the presence of suitable coordination environments for hydrogen abstraction reactions carried out in water solution at room temperature, freeenergy barriers as low as ca. 30 kJ mol À1 have been predicted on the basis of DFT calculations, to be compared to an estimate of ca.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation