2022
DOI: 10.1002/solr.202200168
|View full text |Cite
|
Sign up to set email alerts
|

Amino Acid‐Based Low‐Dimensional Management for Enhanced Perovskite Solar Cells

Abstract: However, due to their inherent structural characteristics, [19,20] the 3D perovskites still suffer from limited stability under certain environmental stresses, such as moisture, [21][22][23] heat and light, [22,24,25] which hinders the progress of perovskite solar cells (PSCs) toward commercialization. [26,27] In order to improve the stability of 3D PSCs, low-dimensional (LD) perovskites are often used. [28][29][30][31] Because of the superhydrophobicity of organic molecules, LD perovskite possesses unique adv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 40 publications
0
5
0
1
Order By: Relevance
“…However, hydrophilic components such as ionic groups should also be included in these molecules to Fig. 21 Chemical structures of PF5A, PF5N, PF5O, 145 QPSCl, 146 PL-A, 147 FSA, 148 LPEI, 149 BED, 150 DMIMB, 151 C4I, C6I, 152 EMIMSCN, 154 BZMIMCl, 155 EMIM-TFSI, 157 and MOCs. ensure adequate coverage of the perovskite films.…”
Section: Improvement Of Atmospheric Stabilitymentioning
confidence: 99%
See 1 more Smart Citation
“…However, hydrophilic components such as ionic groups should also be included in these molecules to Fig. 21 Chemical structures of PF5A, PF5N, PF5O, 145 QPSCl, 146 PL-A, 147 FSA, 148 LPEI, 149 BED, 150 DMIMB, 151 C4I, C6I, 152 EMIMSCN, 154 BZMIMCl, 155 EMIM-TFSI, 157 and MOCs. ensure adequate coverage of the perovskite films.…”
Section: Improvement Of Atmospheric Stabilitymentioning
confidence: 99%
“…Fig.21Chemical structures of PF5A, PF5N, PF5O,145 QPSCl,146 PL-A,147 FSA,148 LPEI,149 BED, 150 DMIMB, 151 C4I, C6I,152 EMIMSCN,154 BZMIMCl,155 EMIM-TFSI,157 and MOCs 159. …”
mentioning
confidence: 99%
“…化效率已经从最初报道的 3.8% 提高到 25.7% [4][5] , 接近了单晶硅太阳能电池的最高能量转化效率 (26.8%) [6] 。钙钛矿太阳能电池的能量转化效率提升 有多种策略,例如器件结构优化、化学组分工程、 界面工程和添加剂工程 [7][8][9][10] 等。 其中, 添加剂工程是 提高钙钛矿薄膜结晶度、优化形貌和钝化缺陷的相 对简单的方法 [11][12][13] 。大多数添加剂工程所使用的钝 化剂是通过官能团上的路易斯酸或路易斯碱钝化钙 钛矿薄膜内的缺陷 [14] 。未配位的铅离子(Pb 2+ )是一 种常见的缺陷类型,其一方面会诱导非辐射复合, 另一方面可以提供离子迁移的途径,从而加速钙钛 矿太阳能电池降解 [15] 。因此,选择合适的添加剂钝 化钙钛矿表面和晶界缺陷有助于提高其能量转化效 率和稳定性。 液晶分子具有较强的自组装能力和调节微观形 貌的能力 [13,16] 。 2018 年, Arivunithi 等 [17] 将含有 N、 O、S 等原子的侧链液晶聚合物 SCLCP 加入到钙钛 矿前驱液中,这些原子所带的孤电子对能够有效钝 化 CH3NH3PbI3 钙钛矿薄膜缺陷,增强电荷转移,太 阳能电池的能量转换效率从 18.0%提高到 20.63%。 之后,该研究组 [18] 进一步改性该液晶聚合物的化学 结构,发现它们能够控制溶剂挥发速率,增大晶粒 尺寸并减少晶界,从而抑制电荷复合并减缓电池降 解。 2021 年, Xia 等 [19] 将共轭的离子液晶 4'-(N,N,N-三甲基溴化铵己氧基)-4-氰基联苯作为添加剂应用 于 CH3NH3PbI3 电池的制备,氰基(C≡N)基团和棒 状π共轭联苯介晶单元有效调节了钙钛矿薄膜的晶 体生长,太阳能电池能量转化效率从 18.07% 提高 到 20.45%。甲脒阳离子(CH(NH2)2 + ,FA + )的湿热稳 定性比甲基铵阳离子(CH3NH3 + )更好 [20] ,更适用于 作为 ABX3 钙钛矿结构的 A 位阳离子,并增强器件 的能量转化效率和稳定性 [21] 。2019 年,Tao 等 [22] 在 组分为 为了定量研究 5CB 添加剂对 FAPbI3 钙钛矿薄 膜内部陷阱密度和电荷输运的影响,进行了单电荷 器件的电流电压特性和电化学交流阻抗谱分析。首 先 制备了结构为 FTO/PEDOT:PSS/FAPbI3/spiro-OMeTAD/Ag 的单空穴器件,采用空间限制电流法 测量 [27] 其电流-电压曲线,如图 7(a)所示。低偏置电 压的线性区域对应欧姆响应,区域内的电流明显上 升,直到偏置电压超过拐点,这表明该区域所有陷 阱态都被注入的电子完全填充。钙钛矿薄膜中相应 的陷阱状态密度(Nt)可以通过以下公式(1)计算 [28] 𝑁 𝑡 = 𝑉 𝑇𝐹𝐿 𝜀𝜀 0 𝑒𝐿 2 (1)…”
unclassified
“…The HSE + SOC α = 0.43 band gaps are in good agreement with previous studies. 37,38 The band structures and corresponding projected density of states (PDOS) are shown in Fig. S1.…”
mentioning
confidence: 99%