2007
DOI: 10.1016/j.jalgebra.2007.05.020
|View full text |Cite
|
Sign up to set email alerts
|

Almost split morphisms, preprojective algebras and multiplication maps of maximal rank

Abstract: With a grading previously introduced by the second-named author, the multiplication maps in the preprojective algebra satisfy a maximal rank property that is similar to the maximal rank property proven by Hochster and Laksov for the multiplication maps in the commutative polynomial ring. The result follows from a more general theorem about the maximal rank property of a minimal almost split morphism, which also yields a quadratic inequality for the dimensions of indecomposable modules involved.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?