We isolated mesenchymal stem cells (MSC) from arteries (UCA), veins (UCV), and Wharton's jelly (UCWJ) of human umbilical cords (UC) and determined their relative capacities for sustained proliferation and multilineage differentiation. Individual UC components were dissected, diced into 1-2 mm(3) fragments, and aligned in explant cultures from which migrating cells were isolated using trypsinization. Preparations from 13 UCs produced 13 UCWJ, 11 UCV, and 10 UCA cultures of fibroblast-like, spindle-shaped cells negative for CD31, CD34, CD45, CD271, and HLA-class II, but positive for CD13, CD29, CD44, CD73, CD90, CD105, and HLA-class I. UCV cells exhibited a significantly higher frequency of colony-forming units fibroblasts than did UCWJ and UCA cells. Individual MSCs could be selectively differentiated into osteoblasts, chondrocytes, and adipocytes. When compared for osteogenic potential, UCWJ cells were the least effective precursors, whereas UCA-derived cells developed alkaline phosphatase activity with or without an osteogenic stimulus. UC components, especially blood vessels, could provide a promising source of MSCs with important clinical applications.