Neurons vary greatly in size, shape, and complexity depending on their underlying function. Overall size of neuronal trees affects connectivity, area of influence, and other biophysical properties. Relative distributions of neuronal extent, such as the difference between subtrees at branch points, are also critically related to function and activity. This review covers neuromorphological research that analyzes shape and size to elucidate their functional role for different neuron types. We also introduce a novel morphometric, "caulescence", capturing the extent to which trees exhibit a main path. Neuronal tree types differ vastly in caulescence, suggesting potential neurocomputational correlates of this property.