2021
DOI: 10.1088/1873-7005/ac44f9
|View full text |Cite
|
Sign up to set email alerts
|

Algebraic stability modes in rotational shear flow

Abstract: We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution $\exp(\omega t)$. Based on the work of \citeasnoun{NoldOberlack2013}, we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity $V(r)=r^{-1}$ an additional symmetry exists, such that a mode wit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?