Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aimed to investigate the effects of applying arbuscular mycorrhizal fungi (AMF) on maize root growth and yield formation under different soil conditions. This study was conducted under sandy soil (S) and saline–alkali soil (Y), with treatments of AMF application (AM) and no AMF application (CK). The root characteristics, yield, and quality of maize were measured. High-throughput sequencing technology was employed to assess the impact of AMF on the soil microbial community structure, and the correlation between soil microbes and soil physicochemical properties was elucidated. The results show that under both sandy and saline–alkali soil conditions, AMF application significantly enhanced maize root growth, yield, grain quality, and soil available nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents compared to the CK treatment. Soil microbial Alpha diversity analysis indicated that AMF application effectively increased soil microbial diversity and richness. Principal coordinate analysis (PCoA) and microbial community structure analysis revealed significant differences in bacterial communities between AM treatment in sandy soil (SAM) and CK in sandy soil (SCK), and significant differences in both bacterial and fungal communities between AM treatment in saline–alkali soil (YAM) and CK in saline–alkali soil (YCK). Furthermore, significant correlations between microbial communities and soil physicochemical properties were found, such as AN, AP, AK, soil salinity (SS), and organic matter (OM) content. AMF application had a greater impact on bacterial communities than on fungal communities. This study demonstrated that the use of AMF as a bio-fungal fertilizer was effective in improving spring maize yields, especially in terms of yield increase and quality stability in sandy and saline soils, thereby contributing to safe and sustainable cropping practices.
This study aimed to investigate the effects of applying arbuscular mycorrhizal fungi (AMF) on maize root growth and yield formation under different soil conditions. This study was conducted under sandy soil (S) and saline–alkali soil (Y), with treatments of AMF application (AM) and no AMF application (CK). The root characteristics, yield, and quality of maize were measured. High-throughput sequencing technology was employed to assess the impact of AMF on the soil microbial community structure, and the correlation between soil microbes and soil physicochemical properties was elucidated. The results show that under both sandy and saline–alkali soil conditions, AMF application significantly enhanced maize root growth, yield, grain quality, and soil available nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents compared to the CK treatment. Soil microbial Alpha diversity analysis indicated that AMF application effectively increased soil microbial diversity and richness. Principal coordinate analysis (PCoA) and microbial community structure analysis revealed significant differences in bacterial communities between AM treatment in sandy soil (SAM) and CK in sandy soil (SCK), and significant differences in both bacterial and fungal communities between AM treatment in saline–alkali soil (YAM) and CK in saline–alkali soil (YCK). Furthermore, significant correlations between microbial communities and soil physicochemical properties were found, such as AN, AP, AK, soil salinity (SS), and organic matter (OM) content. AMF application had a greater impact on bacterial communities than on fungal communities. This study demonstrated that the use of AMF as a bio-fungal fertilizer was effective in improving spring maize yields, especially in terms of yield increase and quality stability in sandy and saline soils, thereby contributing to safe and sustainable cropping practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.