P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120-I125) were specifically labeled by tetramethyl-rhodaminemaleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoylbenzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP-induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain. P 2X receptors (P2XRs) represent a family of nonselective cation channels gated by extracellular ATP. They are widely distributed in mammalian tissues and have been shown to be involved in diverse physiological functions (1). The seven known subunits all contain two transmembrane domains linked by a large extracellular loop. Functional receptors are homo-or heteromeric trimers (2, 3).Based on mutagenesis studies, it has been suggested that conserved positively charged and aromatic residues are crucial for ATP binding, presumably by interacting with the negatively charged phosphate chain of ATP (4-6) and its adenine ring (6), respectively. We have previously shown that replacement of two of these residues, K68 and F291, by cysteine residues allows disulfide cross-linking between neighboring P2X1 subunits and that this reaction is prevented in the presence of ATP. Based on these data, we concluded that the ATP binding sites are located at the subunit interfaces (7,8). This conclusion is in good agreement with the positions of the relevant amino acids in the crystal structure of the unliganded P2X4R from zebrafish (2). This zP2X4 structure revealed an ion channel architecture that resembles a dolphin, with the transmembrane helices and the extracellular region forming the fluke and the upper body, respectively. Att...