<span lang="EN-US">Shot boundary detection is the fundamental technique that plays an important role in a variety of video processing tasks such as summarization, retrieval, object tracking, and so on. This technique involves segmenting a video sequence into shots, each of which is a sequence of interrelated temporal frames. This paper introduces two methods, where the first is for detecting the cut shot boundary via employing visual hybrid features, while the second method is to compare between them. This enhances the effectiveness of the performance of detecting the shot by selecting the strongest features. The first method was performed by utilizing hybrid features, which included statistics histogram of hue-saturation-value color space and grey level co-occurrence matrix. The second method was performed by utilizing hybrid features that include discrete wavelet transform and grey level co-occurrence matrix. The frame size decreased. This process had the advantage of reducing the computation time. Also used local adaptive thresholds, which enhanced the method’s performance. The tested videos were obtained from the BBC archive, which included BBC Learning English and BBC News. Experimental results have indicated that the second method has achieved (97.618%) accuracy performance, which was higher than the first and other methods using evaluation metrics.</span>