The objective of the Innovative High-Temperature Fuel Nozzle Program was to design, fabricate, and test propulsion engine fuel nozzles capable of performance despite extreme fuel and air inlet temperatures. Although a variety of both passive and active methods for reducing fuel wetted-surface temperatures were studied, simple thermal barriers were found to offer the best combination of operability, cycle flexibility, and performance. A separate nozzle material study examined several nonmetallics and coating schemes for evidence of passivating or catalytic tendencies. Two pilotless airblast nozzles were developed by employing finite-element modeling to optimize thermal barriers in the stem and tip. Operability of these prototypes was compared to a current state-of-the-art piloted, prefilming airblast nozzle, both on the spray bench and through testing in a can-type combustor. The three nozzles were then equipped with internal thermocouples and operated at 1600F air inlet temperature while injecting marine diesel fuel heated to 350F. Measured and predicted internal temperatures as a function of fuel flow rate were compared. Results show that the thermal barrier systems dramatically reduced wetted-surface temperatures and the potential for coke fouling, even in an extreme environment.