2022
DOI: 10.1007/s10765-022-03010-3
|View full text |Cite
|
Sign up to set email alerts
|

Advanced Passive Thermal Control Materials and Devices for Spacecraft: A Review

Abstract: In recent planetary exploration space missions, spacecraft are exposed to severe thermal environments that are sometimes more extreme than those experienced in earth orbits. The development of advanced thermal control materials and devices together with reliable and accurate measurements of their thermophysical properties are needed for the development of systems designed to meet the engineering challenges associated with these space missions. We provide a comprehensive review of the state-of-the-art advanced … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
18
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(19 citation statements)
references
References 74 publications
0
18
0
1
Order By: Relevance
“…No details about the thicknesses of the layers could be found in their article. Flight demonstrations of optimized La0.775Sr0.115Ca0.11MnO3 (dimensions 30 mm × 30 mm × 70 µ m) ceramic tiles on spacecrafts launched by the Japan Aerospace Exploration Agency confirmed a reduction in the SRD's temperature while saving heater power [39]. This being said, SRD technology based on doped LMO materials still seems to suffer from limitations in its optimal use for spacecrafts in general, and nanosatellites [37].…”
Section: Characterization Of the Emittance Performance Of The Srd Wit...mentioning
confidence: 99%
See 1 more Smart Citation
“…No details about the thicknesses of the layers could be found in their article. Flight demonstrations of optimized La0.775Sr0.115Ca0.11MnO3 (dimensions 30 mm × 30 mm × 70 µ m) ceramic tiles on spacecrafts launched by the Japan Aerospace Exploration Agency confirmed a reduction in the SRD's temperature while saving heater power [39]. This being said, SRD technology based on doped LMO materials still seems to suffer from limitations in its optimal use for spacecrafts in general, and nanosatellites [37].…”
Section: Characterization Of the Emittance Performance Of The Srd Wit...mentioning
confidence: 99%
“…The solution to this could be using doped LMO material in the form of thin films instead of ceramic tiles. Unfortunately, the emittance performance of doped-LMO films tends to be lower than that of ceramic tiles, and many recent studies have primarily focused on the improvement in the emittance performance of doped LMO-based perovskites when prepared in the form of thin films[39]. Other limitations, such as the wide metal-insulator transition ranges and slow transition speeds, must be tackled for effective use of doped LMO-based SRDs as passive thermal control systems for nanosatellites[40].In contrast, VO 2 -based SRDs display a combination of characteristics, making them suitable for space applications in general, and for nanosatellites in particular.…”
mentioning
confidence: 99%
“…Composite materials are widely used as load-bearing structures for spacecraft and near-space vehicles because of their high specific strength, strong damping capacity, and high specific modulus [1]. To protect the composite structure and sensitive payloads of spacecraft within acceptable temperature limits, the thermal protection system (TPS) should be installed on the base structure to withstand high temperature, temperature gradients, and aerodynamic shear during reentry or ultralow temperature on the dark side during orbit [2]. Although the surface temperature of TPS in the nose area, wing, and leading edges is up to a maximum temperature of 1700 K, the internal surface temperature of the base structure is much lower than that of TPS.…”
Section: Introductionmentioning
confidence: 99%
“…Thermal matching among the base structure, TPS, and connecting elements is the concern of the spacecraft overall design [3]. It has been reported that the temperature constraint does not exceed a value of 573 K for lightweight CFRP skins, with a general operating condition temperature of 400 K [2,4]. Even so, the thermal-structural stresses induced by temperature gradients and aerodynamic pressure loads will aggravate the micro-deformation expansion of the base structure and materials, and even lead to structural failure.…”
Section: Introductionmentioning
confidence: 99%
“…Це пов'язано зі значним підвищенням не лише продуктивності та функціональності компонентної бази космічних пристроїв, але й підвищенням точності й надійності методів та засобів контролю робочих параметрів цих пристроїв, а також контролю зміни геометричних характеристик та функціональних властивостей поверхні матеріалів, які використовуються в екстремальних умовах космічного простору. Як зазначено в роботі [19], саме контроль поверхні матеріалів, які піддаються впливу космічних факторів (наднизьких та надвисоких температур, низького тиску, впливу радіаційного космічного випромінювання тощо) на етапі випробовування або ранніх стадіях їхньої експлуатації дозволяє виявити їхні можливі дефекти та брак, що, у свою чергу, мінімізує виникнення аварійних ситуацій при запуску або експлуатації космічної техніки. Останні, на думку фахівців [9,13,21], є основною причиною найбільш гучних аварій та катастроф, пов'язаних з дослідженнями космосу.…”
unclassified