Gas storage in solids is becoming an ever more important technology, with applications and potential applications ranging from energy and the environment all the way to biology and medicine. Very highly porous materials, such as zeolites, carbon materials, polymers, and metal-organic frameworks, offer a wide variety of chemical composition and structural architectures that are suitable for the adsorption and storage of many different gases, including hydrogen, methane, nitric oxide, and carbon dioxide. However, the challenges associated with designing materials to have sufficient adsorption capacity, controllable delivery rates, suitable lifetimes, and recharging characteristics are not trivial in many instances. The different chemistry associated with the various gases of interest makes it necessary to carefully match the properties of the porous material to the required application.