Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity. In this work, we developed a single immunization SARS-CoV-2 subunit vaccine that could rapidly generate potent, broad, and durable humoral immunity. We leveraged injectable polymer-nanoparticle (PNP) hydrogels as a depot technology for the sustained delivery of a nanoparticle COVID antigen displaying multiple copies of the SARS-CoV-2 receptor-binding-domain (RBD NP), and potent adjuvants including CpG and 3M052. Compared to a clinically relevant prime-boost regimen with soluble vaccines formulated with CpG/Alum or 3M052/Alum adjuvants, PNP hydrogel vaccines more rapidly generated higher, broader, and more durable antibody responses. Additionally, these single-immunization hydrogel-based vaccines elicited potent and consistent neutralizing responses. Overall, we show that PNP hydrogels elicit improved anti-COVID immune responses with only a single administration, demonstrating their potential as critical technologies to enhance our overall pandemic readiness.