Previous studies have indicated that volume regulated anion channels (VRACs) may be involved in the pathology of the ischemic brain cortical penumbra due to activation of VRAC-mediated excitatory amino-acid (EAA) release. To assess this we had studied neuroprotection and EAA release inhibition by a potent VRAC inhibitor, tamoxifen. However, tamoxifen inhibits several other neurodamaging processes. In the present study we use an ethacrynic acid derivative, 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), that has recently been shown to be a specific antagonist of volume regulated anion channels (VRAC), to measure the extent of neuroprotection provided and thus to better assess the role of VRAC-mediated release of excitatory amino acids in an intraluminal suture, reversible middle cerebral artery occlusion (rMCAO) model in adult rats. Rats given DCPIB intracisternally had significantly better neurobehavioral scores after 24 hours and showed significantly reduced infarct volumes. Mean infarct volumes were 208.0 (SD = 38.3) mm 3 for the vehicle groups, compared with 68.5 (SD = 22.7) mm 3 for intracisternally DCPIBtreated groups (p=0.02, Mann-Whitney test), a reduction of around 75%. However, a 500-fold higher dose of DCPIB given intravenously did not reduce infarct volume or improve behavior. The microdialysis study demonstrated statistically significant reduced brain extracellular fluid glutamate when DCPIB was present in the probe. Thus DCPIB, a specific inhibitor of VRACs, given i.c. provides strong neuroprotection in brain ischemia, but it appears to not cross the blood brain barrier as it is not effective when given i.v. These experiments support the hypothesis that EAA released via VRACs contributes to later ischemic-induced damage.