Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Except for linear devices like CRTs, color transformations from colorimetric specifications to device coordinates are mostly obtained by measuring a set of samples, inverting the table, and looking up values in the table (including interpolation), and mapping the gamut from input to output device.The accuracy of a transformation is determined by reproducing a second set of samples and measuring the reproduction errors. Accuracy as the average predicted perceptual error is then used as a metric for quality. Accuracy and precision are important metrics in commercial print because a print service provider can charge a higher price for more accurate color, or can widen his tolerances when customers prefer cheap prints.The disadvantage of determining tolerances through averaging perceptual errors is that the colors in the sample sets are independent and this is not necessarily a good correlate of print quality as determined through psychophysics studies. Indeed, images consist of color palettes and the main quality factor is not color fidelity but color integrity. For example, if the divergence of the field of error vectors is zero, color constancy is likely to take over and humans will perceive the color reproduction as being of good quality, even if the average error is relatively large. However, if the errors are small but in random directions, the perceived image quality is poor because the relation among colors is altered.We propose a standard practice to determine tolerance based on the Farnsworth-Munsell 100-hue test (FM-100) for the second set and to evaluate the color transpositions-a metric for color integrity-instead of the color differences. The quality metric is then the FM-100 score. There are industry standards for the tolerances of color judges, and the same tolerances and classification can be use for print workflows or its components (e.g., presses, proofers, displays). We generalize this practice to arbitrary perceptually uniform scales tailored to specific applications and present an implementation.In essence, we propose to extend the color discrimination test procedures used to evaluate human observers, to mechanical and electronic color reproduction devices.
Except for linear devices like CRTs, color transformations from colorimetric specifications to device coordinates are mostly obtained by measuring a set of samples, inverting the table, and looking up values in the table (including interpolation), and mapping the gamut from input to output device.The accuracy of a transformation is determined by reproducing a second set of samples and measuring the reproduction errors. Accuracy as the average predicted perceptual error is then used as a metric for quality. Accuracy and precision are important metrics in commercial print because a print service provider can charge a higher price for more accurate color, or can widen his tolerances when customers prefer cheap prints.The disadvantage of determining tolerances through averaging perceptual errors is that the colors in the sample sets are independent and this is not necessarily a good correlate of print quality as determined through psychophysics studies. Indeed, images consist of color palettes and the main quality factor is not color fidelity but color integrity. For example, if the divergence of the field of error vectors is zero, color constancy is likely to take over and humans will perceive the color reproduction as being of good quality, even if the average error is relatively large. However, if the errors are small but in random directions, the perceived image quality is poor because the relation among colors is altered.We propose a standard practice to determine tolerance based on the Farnsworth-Munsell 100-hue test (FM-100) for the second set and to evaluate the color transpositions-a metric for color integrity-instead of the color differences. The quality metric is then the FM-100 score. There are industry standards for the tolerances of color judges, and the same tolerances and classification can be use for print workflows or its components (e.g., presses, proofers, displays). We generalize this practice to arbitrary perceptually uniform scales tailored to specific applications and present an implementation.In essence, we propose to extend the color discrimination test procedures used to evaluate human observers, to mechanical and electronic color reproduction devices.
In this paper we introduce a unified framework that automatically selects the optimal color rendering intent for a given print job. We first present how we extract information from both the image features and the semantic information contained in keywords attached to this image. Then we show how our framework unifies the two inputs to select the optimal ICC rendering intent.The framework is evaluated with a psychophysical experiment on an image data set printed with the ICC media-relative colorimetric and perceptual intents using an Océ large format printer. We find that our method is correctly able to predict the observers preferences in 81% of the images tested when the keyword is included compared to 58% when the keyword is not included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.