2023
DOI: 10.1109/tac.2022.3225465
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Prescribed Finite Time Control for Strict-Feedback Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 14 publications
(1 citation statement)
references
References 28 publications
0
1
0
Order By: Relevance
“…Consider the armature‐controlled DC motor system studied in Reference 55 which the relative degree is r=2$$ r=2 $$, leftalignedleftalign-oddRaia+Lai˙a+Ceωalign-even=u,leftalign-oddJω˙+fωCmiaalign-even=0,$$ {\displaystyle \begin{array}{ll}{R}_{\mathrm{a}}{i}_{\mathrm{a}}+{L}_{\mathrm{a}}{\dot{i}}_{\mathrm{a}}+{C}_{\mathrm{e}}\omega & =u,\\ {}J\dot{\omega}+ f\omega -{C}_{\mathrm{m}}{i}_{\mathrm{a}}& =0,\end{array}} $$ where Rnormala=6normalΩ,Lnormala=0.1normalH,Cnormale=0.132normalVnormal·normalsfalse/normalrad,Cnormalm=0.2,f=0.15normalNnormal·normalmnormal·normalsfalse/normalrad$$ {R}_{\mathrm{a}}=6\Omega, {L}_{\mathrm{a}}=0.1\mathrm{H},{C}_{\mathrm{e}}=0.132\mathrm{V}\cdotp \mathrm{s}/\mathrm{rad},{C}_{\mathrm{m}}=0.2,f=0.15\mathrm{N}\cdotp \mathrm{m}\cdotp \mathrm{s}/\mathrm{rad} $$ and J=0.06125normalkgnormal·normalm2$$ J=0.06125\mathrm{kg}\cdotp {\mathrm{m}}^2 $$ are constants which denote resistance, inductance, back electromotive force coefficient, electromagnetic torque coefficient, friction coefficient and rotational inertia, respectively, ω,inormala$$ \omega, {i}_{\mathrm{a}} $$ are angular speed, armature current denote system variables with ωfalse(0false)=25.…”
Section: Numerical Examplesmentioning
confidence: 99%
“…Consider the armature‐controlled DC motor system studied in Reference 55 which the relative degree is r=2$$ r=2 $$, leftalignedleftalign-oddRaia+Lai˙a+Ceωalign-even=u,leftalign-oddJω˙+fωCmiaalign-even=0,$$ {\displaystyle \begin{array}{ll}{R}_{\mathrm{a}}{i}_{\mathrm{a}}+{L}_{\mathrm{a}}{\dot{i}}_{\mathrm{a}}+{C}_{\mathrm{e}}\omega & =u,\\ {}J\dot{\omega}+ f\omega -{C}_{\mathrm{m}}{i}_{\mathrm{a}}& =0,\end{array}} $$ where Rnormala=6normalΩ,Lnormala=0.1normalH,Cnormale=0.132normalVnormal·normalsfalse/normalrad,Cnormalm=0.2,f=0.15normalNnormal·normalmnormal·normalsfalse/normalrad$$ {R}_{\mathrm{a}}=6\Omega, {L}_{\mathrm{a}}=0.1\mathrm{H},{C}_{\mathrm{e}}=0.132\mathrm{V}\cdotp \mathrm{s}/\mathrm{rad},{C}_{\mathrm{m}}=0.2,f=0.15\mathrm{N}\cdotp \mathrm{m}\cdotp \mathrm{s}/\mathrm{rad} $$ and J=0.06125normalkgnormal·normalm2$$ J=0.06125\mathrm{kg}\cdotp {\mathrm{m}}^2 $$ are constants which denote resistance, inductance, back electromotive force coefficient, electromagnetic torque coefficient, friction coefficient and rotational inertia, respectively, ω,inormala$$ \omega, {i}_{\mathrm{a}} $$ are angular speed, armature current denote system variables with ωfalse(0false)=25.…”
Section: Numerical Examplesmentioning
confidence: 99%