2011
DOI: 10.1007/s11633-010-0555-z
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive predictive functional control for networked control systems with random delays

Abstract: Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2018
2018

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 10 publications
(1 citation statement)
references
References 12 publications
0
1
0
Order By: Relevance
“…The work in [8] has proposed the model predictive control (MPC) strategy of system with network-induced time delays described by Markovian chains. The work in [9] has used the adaptive predictive functional control to process the discrete state space model with variable time delays. Different from the previous paper, [10] has used a new model and provided a comprehensive approach of MPC for NCS with bounded arbitrary time delay and data packets disorder.…”
Section: Introductionmentioning
confidence: 99%
“…The work in [8] has proposed the model predictive control (MPC) strategy of system with network-induced time delays described by Markovian chains. The work in [9] has used the adaptive predictive functional control to process the discrete state space model with variable time delays. Different from the previous paper, [10] has used a new model and provided a comprehensive approach of MPC for NCS with bounded arbitrary time delay and data packets disorder.…”
Section: Introductionmentioning
confidence: 99%