When a grid-forming (GFM) inverter is connected to a low- or medium-voltage weak power grid, the line impedance with resistive and inductive characteristics will cause power coupling. Typical GFM decoupling control strategies are designed under nominal line impedance parameters. However, there are deviations between the nominal line impedance and actual parameters, resulting in poor decoupling effects. Aiming at this problem, this paper proposes a power decoupling strategy based on a reduced-order extended state observer (RESO). Firstly, the power dynamic model of the GFM is established based on the dynamic phasor method. Then, the model deviation and power coupling due to line impedance parameter perturbation are estimated as internal disturbances of the system, and the disturbances are compensated on the basis of typical power control strategy and virtual impedance decoupling. Good decoupling performance is obtained under different impedance parameters, improving the control strategy’s robustness. Finally, the effectiveness of the proposed method is verified by the results of RT Box hardware-in-the-loop experiments.