2022
DOI: 10.1002/acs.3458
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive hierarchical sliding mode controller for tower cranes based on finite time disturbance observer

Abstract: Summary A finite time disturbance observer (FTDO) based adaptive hierarchical sliding mode control (AHSMC) is proposed for 4‐DOF tower crane systems with unknown external disturbances. More specifically, to overcome the unknown disturbances, an FTDO combined with the designed adaptive observation error is presented to estimate both matched and unmatched disturbances. Then a new error dynamics taking into account the unmatched disturbances is defined, based on which, a novel nonsingular fast terminal sliding mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
23
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 19 publications
(25 citation statements)
references
References 44 publications
(96 reference statements)
0
23
0
Order By: Relevance
“…$$ Therefore, the hierarchical sliding mode surface () can converge to zero when tmaxfalse{To,Tnormalrfalse}$$ t\ge \max \left\{{T}_o,{T}_{\mathrm{r}}\right\} $$. According to Reference 12, one can conclude that the subsystem surfaces can also converge to the equilibrium in fixed time. Then, Equation () becomes bold-italicy2false(ifalse)=prefix−ϕ1false(||bold-italicy1false(ifalse)false)sinormalgκ1false(||bold-italicy1false(ifalse)false)false(bold-italicy1false(ifalse)false)prefix−ϕ2false(||bold-italicy1false(ifalse)false)sinormalgκ2false(||bold-italicy1false(ifalse)false)false(bold-italicy1false(ifalse)false)1emi=1,2,3,4.$$ {\boldsymbol{y}}_{2(i)}=-{\phi}_1\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)\mathrm{si}{\mathrm{g}}^{\kappa_1\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)}\left({\boldsymbol{y}}_{1(i)}\right)-{\phi}_2\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)\mathrm{si}{\mathrm{g}}^{\kappa_2\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)}\left({\boldsymbol{y}}_{1(i)}\right)\kern1em i=1,2,3,4.…”
Section: Novel Hsmc Of Tower Crane Systemmentioning
confidence: 92%
See 4 more Smart Citations
“…$$ Therefore, the hierarchical sliding mode surface () can converge to zero when tmaxfalse{To,Tnormalrfalse}$$ t\ge \max \left\{{T}_o,{T}_{\mathrm{r}}\right\} $$. According to Reference 12, one can conclude that the subsystem surfaces can also converge to the equilibrium in fixed time. Then, Equation () becomes bold-italicy2false(ifalse)=prefix−ϕ1false(||bold-italicy1false(ifalse)false)sinormalgκ1false(||bold-italicy1false(ifalse)false)false(bold-italicy1false(ifalse)false)prefix−ϕ2false(||bold-italicy1false(ifalse)false)sinormalgκ2false(||bold-italicy1false(ifalse)false)false(bold-italicy1false(ifalse)false)1emi=1,2,3,4.$$ {\boldsymbol{y}}_{2(i)}=-{\phi}_1\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)\mathrm{si}{\mathrm{g}}^{\kappa_1\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)}\left({\boldsymbol{y}}_{1(i)}\right)-{\phi}_2\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)\mathrm{si}{\mathrm{g}}^{\kappa_2\left(\left|{\boldsymbol{y}}_{1(i)}\right|\right)}\left({\boldsymbol{y}}_{1(i)}\right)\kern1em i=1,2,3,4.…”
Section: Novel Hsmc Of Tower Crane Systemmentioning
confidence: 92%
“…In this section, according to the geometric model shown in Figure 1 and using the Euler–Lagrange function, a dynamic model of a tower crane can be described as follows 12 : alignleftalign-1align-2(Mt+mp)d¨mplS2φ¨+mplC1C2θ¨1mplS1S2θ¨2(Mt+mp)dφ˙22mplC1S2θ˙1θ˙2align-1align-2mplC2×[S1(φ˙2+θ˙12+θ˙22)+2φ˙θ˙2]=Fd+F1(p˜,Dext),$$ {\displaystyle \begin{array}{ll}& \left({M}_{\mathrm{t}}+{m}_{\mathrm{p}}\right)\ddot{d}...…”
Section: Problem Formulationmentioning
confidence: 99%
See 3 more Smart Citations