Object tracking is a challenging research task because of drastic appearance changes of the target and a lack of training samples. Most online learning trackers are hampered by complications, e.g., drifting problem under occlusion, being out of view, or fast motion. In this paper, a real-time object tracking algorithm termed “robust sum of template and pixel-wise learners” (rStaple) is proposed to address those problems. It combines multi-feature correlation filters with a color histogram. Firstly, we extract a combination of specific features from the searching area around the target and then merge feature channels to train a translation correlation filter online. Secondly, the target state is determined by a discriminating mechanism, wherein the model update procedure stops when the target is occluded or out of view, and re-activated when the target re-appears. In addition, by calculating the color histogram score in the searching area, a significant enhancement is adopted for the score map. The target position can be estimated by combining the enhanced color histogram score with the correlation filter response map. Finally, a scale filter is trained for multi-scale detection to obtain the final tracking result. Extensive experimental results on a large benchmark dataset demonstrates that the proposed rStaple is superior to several state-of-the-art algorithms in terms of accuracy and efficiency.