Recent advances in the characterization of fundamental limits on interference management in wireless networks and the discovery of new communication schemes on how to handle interference led to a better understanding towards the capacity of such networks. The benefits in terms of achievable rates of powerful schemes handling interference, such as interference alignment, are substantial. However, the main issue behind most of these results is the assumption of perfect channel state information at the transmitters (CSIT). In the absence of channel knowledge the performance of various interference networks collapses to what is achievable by time division multiple access (TDMA). Robustinterference management techniques are promising solutions to maintain high achievable rates at various levels of CSIT, ranging from delayed to imperfect CSIT. In this survey, we outline and study two main research perspectives of how to robustly handle interference for cases where CSIT is imprecise on examples for non-distributed and distributed networks, namely broadcast and X-channel. To quantify the performance of these schemes, we use the well-known (generalized) degrees of freedom (GDoF) metric as the pre-log factor of achievable rates. These perspectives maintain the capacity benefits at similar levels as for perfect channel knowledge. These two perspectives are: First, scheme-adaptation that explicitly accounts for the level of channel knowledge and, second, relay-aided infrastructure enlargement to decrease channel knowledge dependency. The relaxation on CSIT requirements through these perspectives will ultimately lead to practical realizations of robust interference management techniques. The survey concludes with a discussion of open problems.