2019
DOI: 10.1103/physrevlett.123.153604
|View full text |Cite
|
Sign up to set email alerts
|

Accurate Detection of Arbitrary Photon Statistics

Abstract: We report a measurement workflow free of systematic errors consisting of a reconfigurable photonnumber-resolving detector, custom electronic circuitry, and faithful data-processing algorithm. We achieve unprecedentedly accurate measurement of various photon-number distributions going beyond the number of detection channels with average fidelity 0.998, where the error is contributed primarily by the sources themselves. Mean numbers of photons cover values up to 20 and faithful autocorrelation measurements range… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
43
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 54 publications
(46 citation statements)
references
References 96 publications
(149 reference statements)
0
43
0
3
Order By: Relevance
“…J can be adjusted by changing the distance of the double resonators [69]. In a recent experiment, autocorrelation measurements range from g (2) (0) = 6 × 10 −3 to 2 have been achieved with average fidelity 0.998 in a photon-number-resolving detector [91]. Moreover, we set Ω = 12 kHz, which is experimentally feasible.…”
Section: Nonreciprocal Optical Correlationsmentioning
confidence: 99%
“…J can be adjusted by changing the distance of the double resonators [69]. In a recent experiment, autocorrelation measurements range from g (2) (0) = 6 × 10 −3 to 2 have been achieved with average fidelity 0.998 in a photon-number-resolving detector [91]. Moreover, we set Ω = 12 kHz, which is experimentally feasible.…”
Section: Nonreciprocal Optical Correlationsmentioning
confidence: 99%
“…number (or phonon-number) resolving detectors which are not available for standard optical or trapped-ion systems. Spatial [16] or time multiplexing [17] is required for optical photons while trapped-ion systems use complex control schemes [18][19][20]; in all these approaches, the amount of resources needed scales unfavourably with the size of the NOON state. Photon counting can be achieved in circuit QED using dispersive interaction of a microwave mode with an ancilla qubit but this approach also requires complicated control schemes [21,22].…”
mentioning
confidence: 99%
“…Из приведенной цитаты следует, что во избежание сложных аналитических инструментов (методов регуляризации) для решения задач инверсии, авторам проще предложить принципиально новый протокол измерения, который опирается на сложную физику и позволяет исключить какие-либо конкретные модели детекторов. Несколько иной вариант преодоления проблемы некорректности задачи предложен в работе [2] (имеется ссылка на нашу статью: [78] V. N. Starkov, A. A. Semenov, and H. V. Gomonay, Numerical.).…”
unclassified
“…A. Semenov, and H. V. Gomonay, Numerical.). В [2] описывается система измерения, состоящей из реконструируемого детектора с разрешением числа фотонов PNRD (PhotonNumber-Resolving Detector), оптимальной электронной схемы и специализированного алгоритма обработки данных. Математическая модель физической задачи представлена в виде бесконечной системы линейных алгебраических уравнений.…”
unclassified
See 1 more Smart Citation