The Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development. In recent years, resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs. Accordingly, the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study. Then, a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided. On the basis of these assessment measures, the optimization methods of CPPS resilience are reviewed from three perspectives, which are mainly focused on the current research, namely, optimizing the recovery sequence of components, identifying and protecting critical nodes, and enhancing the coupling patterns between physical and cyber networks. The recent advances in modeling methods for cascading failures within the CPPS, which is the theoretical foundation for the resilience assessment and optimization research of CPPSs, are also presented. Lastly, the challenges and future research directions for resilience optimizing of CPPSs are discussed.