Cetaceans are the longest-lived species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases like cancer, however their underlying molecular and genetic basis remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of tumor suppressor genes in cetaceans. We found signal of positive selection 29 tumor suppressor genes and duplications in 197 genes. The turnover rate of tumor suppressor genes was almost 6 times faster in cetaceans when compared to other mammals. Those genes with duplications and with positive selection are involved in important cancer regulation mechanisms (e.g. chromosome break, DNA repair and biosynthesis of fatty acids). They are also related with multiple ageing and neurological disorders in humans (e.g. Alzheimer, Nijmegen breakage syndrome, and schizophrenia). These results provide evolutionary evidence that natural selection in tumor suppressor genes could act on species with large body sizes and extended life span, providing insights into the genetic basis of disease resistance. We propose that the cetaceans are an important model in cancer, ageing and neuronal, motor and behavior disorders.