This paper presents the implementation and evaluation of three specific, yet complementary, mechanisms of haptic feedback—namely, normal displacement, tangential position, and vibration—to render, at a finger-level, aspects of touch and proprioception from a prosthetic hand without specialised sensors. This feedback is executed by an armband worn around the upper arm divided into five somatotopic modules, one per each finger. To evaluate the system, just-noticeable difference experiments for normal displacement and tangential position were carried out, validating that users are most sensitive to feedback from modules located on glabrous (hairless) skin regions of the upper arm. Moreover, users identifying finger-level contact using multi-modal feedback of vibration followed by normal displacement performed significantly better than those using vibration feedback alone, particularly when reporting exact combinations of fingers. Finally, the point of subjective equality of tangential position feedback was measured simultaneously for all modules, which showed promising results, but indicated that further development is required to achieve full finger-level position rendering.