Nowadays, indoor air quality (IAQ) and the energy performance of buildings are two main scientific and technical challenges because they are in direct connection with human health and the depletion of energy resources. In this study, we analyzed the influence of an outdoor air flow introduced through a mechanical ventilation system, focusing on the two aforementioned topics. A standardized ventilation rate (25 m3/h/person) led to an increase in the indoor O3 concentration (from 5 μg/m3 to 50 μg/m3) and, simultaneously, to a decrease in the indoor CO2 concentration (from 2000 mg/m3 to 800 mg/m3), a decrease in the PM2.5 concentration (from 300 μg/m3 to 150 μg/m3), and the maintenance of a constant indoor HCHO concentration. In our study, a new, single indoor air quality index, IIAQ, is proposed. This new index presents different implications: on the one hand, it has the ability to simultaneously take into account several pollutant species, and on the other hand, it can prioritize the ventilation strategy that responds to the extreme values of a certain pollutant. Moreover, indoor air quality classes were elaborated, similar to energy classes. The possibility of using this new index simultaneously with energy consumption may lead to ventilation strategies that are adaptative to dynamic outdoor pollutant concentrations.