2016
DOI: 10.1190/geo2015-0152.1
|View full text |Cite
|
Sign up to set email alerts
|

A synthetic study to assess the applicability of full-waveform inversion to infer snow stratigraphy from upward-looking ground-penetrating radar data

Abstract: Snow stratigraphy and liquid water content are key contributing factors to avalanche formation. Upward-looking groundpenetrating radar (upGPR) systems allow nondestructive monitoring of the snowpack, but deriving density and liquid water content profiles is not yet possible based on the direct analysis of the reflection response. We have investigated the feasibility of deducing these quantities using full-waveform inversion (FWI) techniques applied to upGPR data. For that purpose, we have developed a frequency… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
4
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(6 citation statements)
references
References 52 publications
0
4
0
2
Order By: Relevance
“…To solve this problem different techniques are employed. These include: i) a-priori hypothesis on the snow density; ii) the use of additional devices measuring either the snowpack depth or density; iii) approaches derived from ground penetrating radars (GPRs), for example based on the best fitting of the diffraction curve (common offset, common mid-point) or on the migration analysis [18][19][20][21][22][23][24][25][26]. However, these techniques have their own flaws.…”
Section: Introductionmentioning
confidence: 99%
“…To solve this problem different techniques are employed. These include: i) a-priori hypothesis on the snow density; ii) the use of additional devices measuring either the snowpack depth or density; iii) approaches derived from ground penetrating radars (GPRs), for example based on the best fitting of the diffraction curve (common offset, common mid-point) or on the migration analysis [18][19][20][21][22][23][24][25][26]. However, these techniques have their own flaws.…”
Section: Introductionmentioning
confidence: 99%
“…Подповерхностные радары широко используются для измерения одного или одновременного нескольких из следующих параметров снежного покрова: высота, плотность, водный эквивалент (ВЭСП) и влажность [1][2][3][4][5][6][7][8][9][10][11][12][13]. Толщина снежного покрова может быть измерена по времени задержки импульса t, отраженного от границы снег-почва относительно времени прихода опорного импульса.…”
Section: Introductionunclassified
“…Введенный автором дисперсионный параметр [9] пропорционален тангенсу угла потерь и позволяет оценить мнимую часть комплексной диэлектрической проницаемости, а, следовательно, на основе диэлектрической модели снега оценить и его влажность. Развиваются томографические методы, которые могут применяться для измерения перечисленных характеристик снежного покрова с пространственной привязкой к его объему [7,11,12,20]…”
Section: Introductionunclassified
“…Babcock and Bradford (2015) implemented the GPR waveform inversion for quantifying properties for nonaqueous phase liquid thin and ultrathin layers, and Bradford et al (2016) used a targeted GPR reflection-waveform inversion algorithm to quantify the geometry of oil spills under and within sea ice. Sassen and Everett (2009) combined the full-waveform inversion and the fully polarimetric GPR coherency technology to characterize the fractured rock, and Schmid et al (2016) studied the application of FWI to deduce the snow stratigraphy from the upward-looking GPR data. Recently, Feng et al…”
Section: Introductionmentioning
confidence: 99%