2021
DOI: 10.1016/j.forc.2021.100353
|View full text |Cite
|
Sign up to set email alerts
|

A survey of amphetamine type stimulant nitrogen sources by isotope ratio mass spectrometry

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 43 publications
0
3
0
Order By: Relevance
“…2019 GC/MS method for fenethylline profiling of seized samples ; LC-QTOF-MS method for the simultaneous analysis of 111 amine-based compounds belonging to ergogenics, anorectics and other active components including phenethylamines (amphetamines, ephedrines), sibutramine or yohimbine [ 475 ]; excitation-emission matrix fluorescence combined with parallel factor analysis for quantitative analysis of the ATSs illegal drugs [ 476 ]; 2020 investigation of the efficiency and effectiveness of a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances and their precursors from the vapor phase [ 477 ]; LC-MS/MS method for detection of the presence of synthetic amines in dietary supplements [ 478 ]; enantioselective HPLC-MS/MS method for the quantification of (R)-AMP, (S)-AMP, (R)-MA, (S)-MA, (1R,2R)-pseudoephedrine, (1S,2S)-pseudoephedrine, (1R,2S)-ephedrine, (1S,2R)-ephedrine, (1R,2S)-norephedrine, (1S,2R)-norephedrine, (R)-cathinone, (S)-cathinone, and (1S,2S)-norpseudoephedrine (cathine) [ 479 ]; 2021 review of MA and AMP detection and roadside testing [ 480 ]; determination of the variations in delta C-13 and delta N-15 values of nitrogen sources used in the clandestine production of ATSs using isotope ratio mass spectrometry [ 481 ]; electrochemiluminescence strategy for the screening of MA and AMP [ 482 ]; review of laboratory-based and portable methods for detection of ATSs [ 483 ]; review of the prevalence of ATSs in Iran [ 484 ]; SALDI-MS method for the analysis of ATSs, including MA, MDMA, MDEA, and 4-fluoromethamphetamine (4-FMA) [ 485 ]; ATS drug classification using a one-dimensional convolutional neural network model [ 486 ]; 2022 colorimetric assay for detection of ATSs in aqueous solution, spiked drinks, and ‘ecstasy’ tablets [ 487 ]; development and validation of a GC-MS method for identification and quantification of AMP, MA, MDA and MDMA [ 488 ]; development of drug screening kits for the detection of ATSs in drinks [ 489 ]; analysis of feature selection method for 3D molecular structure of ATS drugs [ 490 ]; study of the pharmacological properties of MDA analogues and two related amphetamine-based compounds (N,alpha-DEPEA and DPIA) detected in street drug samples or in sport supplements [ 491 ]; chiral analysis of AMP (n = 143), MDMA (n = 94), and MA (n = 528) in samples seized in southern Germany in 2019 and 2020 using different chromatographic methods [ 492 ]; comparison of different chiral selectors for the enantiomeric determination of amphetamine-type substances by SPE-CE-MS/MS [ 493 ]; ultrahigh performance LC-MS/MS (UPLC-MS/MS) method coupled with magnetic SPE (MSPE) for determination of ultra-trace ATSs [ 494 ]; desk review of Vietnamese national drug policy documents regarding ATSs and in-depth key informant interviews were conducted from 2019 to 2021 [ 495 …”
Section: Routine and Improved Analyses Of Abused Substancesmentioning
confidence: 99%
“…2019 GC/MS method for fenethylline profiling of seized samples ; LC-QTOF-MS method for the simultaneous analysis of 111 amine-based compounds belonging to ergogenics, anorectics and other active components including phenethylamines (amphetamines, ephedrines), sibutramine or yohimbine [ 475 ]; excitation-emission matrix fluorescence combined with parallel factor analysis for quantitative analysis of the ATSs illegal drugs [ 476 ]; 2020 investigation of the efficiency and effectiveness of a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances and their precursors from the vapor phase [ 477 ]; LC-MS/MS method for detection of the presence of synthetic amines in dietary supplements [ 478 ]; enantioselective HPLC-MS/MS method for the quantification of (R)-AMP, (S)-AMP, (R)-MA, (S)-MA, (1R,2R)-pseudoephedrine, (1S,2S)-pseudoephedrine, (1R,2S)-ephedrine, (1S,2R)-ephedrine, (1R,2S)-norephedrine, (1S,2R)-norephedrine, (R)-cathinone, (S)-cathinone, and (1S,2S)-norpseudoephedrine (cathine) [ 479 ]; 2021 review of MA and AMP detection and roadside testing [ 480 ]; determination of the variations in delta C-13 and delta N-15 values of nitrogen sources used in the clandestine production of ATSs using isotope ratio mass spectrometry [ 481 ]; electrochemiluminescence strategy for the screening of MA and AMP [ 482 ]; review of laboratory-based and portable methods for detection of ATSs [ 483 ]; review of the prevalence of ATSs in Iran [ 484 ]; SALDI-MS method for the analysis of ATSs, including MA, MDMA, MDEA, and 4-fluoromethamphetamine (4-FMA) [ 485 ]; ATS drug classification using a one-dimensional convolutional neural network model [ 486 ]; 2022 colorimetric assay for detection of ATSs in aqueous solution, spiked drinks, and ‘ecstasy’ tablets [ 487 ]; development and validation of a GC-MS method for identification and quantification of AMP, MA, MDA and MDMA [ 488 ]; development of drug screening kits for the detection of ATSs in drinks [ 489 ]; analysis of feature selection method for 3D molecular structure of ATS drugs [ 490 ]; study of the pharmacological properties of MDA analogues and two related amphetamine-based compounds (N,alpha-DEPEA and DPIA) detected in street drug samples or in sport supplements [ 491 ]; chiral analysis of AMP (n = 143), MDMA (n = 94), and MA (n = 528) in samples seized in southern Germany in 2019 and 2020 using different chromatographic methods [ 492 ]; comparison of different chiral selectors for the enantiomeric determination of amphetamine-type substances by SPE-CE-MS/MS [ 493 ]; ultrahigh performance LC-MS/MS (UPLC-MS/MS) method coupled with magnetic SPE (MSPE) for determination of ultra-trace ATSs [ 494 ]; desk review of Vietnamese national drug policy documents regarding ATSs and in-depth key informant interviews were conducted from 2019 to 2021 [ 495 …”
Section: Routine and Improved Analyses Of Abused Substancesmentioning
confidence: 99%
“…The high prevalence and associated morbidity and mortality of ATS abuse is now a major public health issue, with a sharp increase in overdose deaths related to ATS. [1] According to the Substance Abuse and Mental Health Services Administration, the number of people over the age of 12 misusing ATS increased from 1.7 million in 2016 to 5.1 million wordwide in 2020. Therefore, there is a growing need to the control ATS abuse.…”
Section: Introductionmentioning
confidence: 99%
“…Over the past decade, misuse of amphetamine-type stimulants has grown significantly worldwide. The high prevalence and associated morbidity and mortality of ATS abuse is now a major public health issue, with a sharp increase in overdose deaths related to ATS 1 . According to the Substance Abuse and Mental Health Services Administration, the number of people over the age of 12 misusing ATS increased from 1.7 million in 2016 to 5.1 million wordwide in 2020.…”
Section: Introductionmentioning
confidence: 99%