This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.