Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The adsorption of Ca on poly(3-hexylthiophene) (P3HT) has been studied by adsorption microcalorimetry, atomic beam/surface scattering, X-ray photoelectron spectroscopy (XPS), low-energy He(+) ion scattering spectroscopy (LEIS), and first-principles calculations. The sticking probability of Ca on P3HT is initially 0.35 and increases to almost unity by 5 ML. A very high initial heat of adsorption in the first 0.02 ML (625-500 kJ/mol) is attributed to the reaction of Ca with defect sites or residual contamination. Between 0.1 and 0.5 ML, there is a high and nearly constant heat of adsorption of 405 kJ/mol, which we ascribe to Ca reacting with subsurface sulfur atoms from the thiophene rings of the polymer. This is supported by the absence of LEIS signal for Ca and the shift of the S 2p XPS binding energy by -2.8 eV for reacted S atoms. The heat of adsorption decreases above 0.6 ML coverage, reaching the sublimation enthalpy of Ca, 178 kJ/mol, by 4 ML. This is attributed to the formation of Ca nanoparticles and eventually a continuous solid Ca film, on top of the polymer. LEIS and XPS measurements, which show only a slow increase of the signals related to solid Ca, support this model. Incoming Ca atoms are subject to a kinetic competition between diffusing into the polymer to react with subsurface thiophene units versus forming or adding to three-dimensional Ca clusters on the surface. At approximately 1.6 ML Ca coverage, Ca atoms have similar probabilities for either process, with the former dominating at lower coverage. Ultimately about 1.6 ML of Ca (1.2 x 10(15) atoms/cm(2)) reacts with S atoms, corresponding to a reacted depth of approximately 3 nm, or nearly five monomer-unit layers. Density-functional theory calculations confirm that the heat of reaction and the shift of the S 2p signal are consistent with Ca abstracting S from the thiophene rings to form small CaS clusters.
The adsorption of Ca on poly(3-hexylthiophene) (P3HT) has been studied by adsorption microcalorimetry, atomic beam/surface scattering, X-ray photoelectron spectroscopy (XPS), low-energy He(+) ion scattering spectroscopy (LEIS), and first-principles calculations. The sticking probability of Ca on P3HT is initially 0.35 and increases to almost unity by 5 ML. A very high initial heat of adsorption in the first 0.02 ML (625-500 kJ/mol) is attributed to the reaction of Ca with defect sites or residual contamination. Between 0.1 and 0.5 ML, there is a high and nearly constant heat of adsorption of 405 kJ/mol, which we ascribe to Ca reacting with subsurface sulfur atoms from the thiophene rings of the polymer. This is supported by the absence of LEIS signal for Ca and the shift of the S 2p XPS binding energy by -2.8 eV for reacted S atoms. The heat of adsorption decreases above 0.6 ML coverage, reaching the sublimation enthalpy of Ca, 178 kJ/mol, by 4 ML. This is attributed to the formation of Ca nanoparticles and eventually a continuous solid Ca film, on top of the polymer. LEIS and XPS measurements, which show only a slow increase of the signals related to solid Ca, support this model. Incoming Ca atoms are subject to a kinetic competition between diffusing into the polymer to react with subsurface thiophene units versus forming or adding to three-dimensional Ca clusters on the surface. At approximately 1.6 ML Ca coverage, Ca atoms have similar probabilities for either process, with the former dominating at lower coverage. Ultimately about 1.6 ML of Ca (1.2 x 10(15) atoms/cm(2)) reacts with S atoms, corresponding to a reacted depth of approximately 3 nm, or nearly five monomer-unit layers. Density-functional theory calculations confirm that the heat of reaction and the shift of the S 2p signal are consistent with Ca abstracting S from the thiophene rings to form small CaS clusters.
Adsorption microcalorimetry measures the energetics of adsorbate-surface interactions and can be performed by use of several different techniques. This review focuses on three methods: single-crystal adsorption calorimetry (SCAC), isothermal titration calorimetry (ITC), and electrochemical adsorption calorimetry. SCAC is a uniquely powerful technique that has been applied to a variety of atoms and molecules that represent a large variety of well-defined adsorbate species on a wide range of single-crystal surfaces. ITC and electrochemical microcalorimetry are useful for studying adsorption energies in liquid solutions (on surfaces of suspended powders) and at the electrode-electrolyte interface, respectively. Knowledge of the energetics of adsorbate formation is valuable to ongoing research in many fields, including catalysis, fuel cells, and solar power. In addition, calorimetric measurements serve as benchmarks for the improvement of computational approaches to understanding surface chemistry. We review instrumentation and applications, emphasizing our own work.
This article introduces a previous study and tremendous progress in basic theoretical modeling, material developments and device engineering for polymer light-emitting devices (PLEDs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.