Abstract:Neural networks (NNs) enable precise modeling of complicated geophysical phenomena but are sensitive to small input changes. In this work, we present a new method for analyzing this instability in NNs. We focus our analysis on adversarial examples, test-time inputs with carefully-crafted human-imperceptible perturbations that expose the worst-case instability in a model's predictions. Our stability analysis is based on a low-rank expansion of NNs on a fixed input, and we apply our analysis to a NN model for… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.