Fire regimes are changing dramatically worldwide due to climate change, habitat conversion, and the suppression of Indigenous landscape management. Although there has been extensive work on plant responses to fire, including their adaptations to withstand fire and long-term effects of fire on plant communities, less is known about animal responses to fire. Ecologists lack a conceptual framework for understanding behavioural responses to fire, which can hinder wildlife conservation and management. Here, we integrate cue-response sensory ecology and predatorprey theory to predict and explain variation in if, when and how animals react to approaching fire. Inspired by the literature on prey responses to predation risk, this framework considers both fire-naïve and fire-adapted animals and follows three key steps: vigilance, cue detection and response. We draw from theory on vigilance tradeoffs, signal detection, speed-accuracy tradeoffs, fear generalization, neophobia and adaptive dispersal. We discuss how evolutionary history with fire, but also other selective pressures, such as predation risk, should influence animal behavioural responses to fire. We conclude by providing guidance for empiricists and outlining potential conservation applications.