2010
DOI: 10.48550/arxiv.1006.5604
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A renormalized rough path over fractional Brownian motion

Abstract: We construct in this article a rough path over fractional Brownian motion with arbitrary Hurst index by (i) using the Fourier normal ordering algorithm introduced in [33] to reduce the problem to that of regularizing tree iterated integrals and (ii) applying the Bogolioubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization algorithm to Feynman diagrams representing tree iterated integrals.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2010
2010
2011
2011

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 16 publications
(22 reference statements)
0
4
0
2
Order By: Relevance
“…Let us summarize very roughly the results obtained so far in the following Proposition: Proposition 2.3 (see [62,16,60]) 1. A rough path is uniquely determined by an algorithm called Fourier normal ordering algorithm from its tree data, which are generalized Fourier normal ordered skeleton integrals on domains indexed by trees.…”
Section: Fourier Normal Orderingmentioning
confidence: 53%
See 1 more Smart Citation
“…Let us summarize very roughly the results obtained so far in the following Proposition: Proposition 2.3 (see [62,16,60]) 1. A rough path is uniquely determined by an algorithm called Fourier normal ordering algorithm from its tree data, which are generalized Fourier normal ordered skeleton integrals on domains indexed by trees.…”
Section: Fourier Normal Orderingmentioning
confidence: 53%
“…This is hopefully understandable to physicists, and also profitable to probabilists who are aware of other proofs of this fact, originally proved in [11], because Fourier analysis is essential in the analysis of Feynman graphs which shall be needed in section 4. We follow here the computations made in [61] or [60]. Definition 1.2 (Harmonizable representation of fBm) Let W (ξ), ξ ∈ R be a complex Brownian motion 9 such that W (−ξ) = −W (ξ), and…”
Section: Definition 11 (Lévy Area)mentioning
confidence: 99%
“…Ce n'est pas le lieu d'expliquer en détails la théorie des chemins rugueux, ainsi que l'origine de la solution que nous avons apportée au problème de la définition de l'aire de Lévy du brownien fractionnaire. Le lecteur intéressé pourra se référer à [69,68,67,19]. Les constructions explicites de chemins rugueux que nous avons introduites reposent toutes sur des méthodes multiéchelles, et plus particulièrement sur la mise en ordre normal de Fourier * des intégrales squelette * .…”
Section: Chemins Rugueuxunclassified
“…Nous insistons sur l'idée qu'il s'agit de substituts: A. Lejay [44,45] a bien fait voir comment on peut modifier à loisir les intégrales itérées d'un chemin en insérant tout le long des "bulles" microscopiques invisibles à l'oeil nu. Les travaux de l'auteur [67,68,69,70,50,51] ont montré en fait que lesdites intégrales itérées s'expriment en termes de champs singuliers (dits ordonnés en Fourier) qui peuvent être régularisés par l'ajout d'un terme d'interaction dans le lagrangien, sans modifier les trajectoires du champ régulier φ sousjacent. Ce miracle s'explique par le flot quasi-trivial du groupe de renormalisation, une itération suffisant pour écranter totalement l'interaction.…”
Section: Introductionunclassified
“…The paths of this Gaussian process are continuous but very "rough", actually α-Hölder, or more precisely α − -Hölder for every α − < α. This makes the very definition of stochastic integration along B or of solutions of stochastic differential equations driven by B a difficult problem, the solution of which is gradually emerging, with deep connections to sub-Riemannian geometry [17], combinatorial Hopf algebras of trees [51,50,14], and quantum field theory, more specifically renormalization [49]. Contrary to the case of usual Brownian motion (given by α = 1/2), stochastic integrals may not be defined for small α by straightforward, e.g.…”
Section: Introductionmentioning
confidence: 99%