2022
DOI: 10.1049/ell2.12569
|View full text |Cite
|
Sign up to set email alerts
|

A regularized method of fundamental solution for solving the 2D PEC cylinder electromagnetic scattering problem

Abstract: In this letter, using subtraction and adding-back (SAB), the authors propose a regularized method of fundamental solution (RMPS) for solving the electromagnetic (EM) scattering problem of 2D perfect electric conductor (PEC) cylinder. The proposed RMPS avoids the problem of choosing the auxiliary boundary in the method of fundamental solution. Two numerical examples are given to verify the effectiveness of the proposed method after comparing with the result of method of fundamental solution. In addition, the re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 14 publications
(21 reference statements)
0
2
0
Order By: Relevance
“…Therefore, a RMFS for solving diagonal values is given. For the TM mode, G ( r m ,bold-italicrm${\bm r}^{\prime}_m$) can be given by the following equation [19]: G(bold-italicrm,bold-italicrm)badbreak=1ksmn=1mNsnleftG(bold-italicrm,bold-italicrn)bold-italicnrnfalse(sinfalse(k(xnxn)false)truen̂xmleft+sinfalse(k(ynym)false)truen̂ymfalse)leftGfalse(rm,rnfalse)false(kcosfalse(k(xnxm)false)truen̂xmtruen̂xnleft+kcosfalse(k(ymyn)false)truen̂ymtruen̂ynfalse),$$\begin{equation}G({{\bm r}_m},{{\bm r}^{\prime}_m}) = \frac{1}{{k{s_m}}}\sum_{n = 1 \ne m}^N {{s_n}\left\{ \def\eqcellsep{&}\begin{array}{l} \displaystyle\frac{{\partial G({{\bm r}_m},{{\bm r}^{\prime}_n})}}{{\partial {{\bm n}_{{{\bm r}^{\prime}_n}}}}}...…”
Section: Rmfs With Excitation Sourcementioning
confidence: 99%
See 1 more Smart Citation
“…Therefore, a RMFS for solving diagonal values is given. For the TM mode, G ( r m ,bold-italicrm${\bm r}^{\prime}_m$) can be given by the following equation [19]: G(bold-italicrm,bold-italicrm)badbreak=1ksmn=1mNsnleftG(bold-italicrm,bold-italicrn)bold-italicnrnfalse(sinfalse(k(xnxn)false)truen̂xmleft+sinfalse(k(ynym)false)truen̂ymfalse)leftGfalse(rm,rnfalse)false(kcosfalse(k(xnxm)false)truen̂xmtruen̂xnleft+kcosfalse(k(ymyn)false)truen̂ymtruen̂ynfalse),$$\begin{equation}G({{\bm r}_m},{{\bm r}^{\prime}_m}) = \frac{1}{{k{s_m}}}\sum_{n = 1 \ne m}^N {{s_n}\left\{ \def\eqcellsep{&}\begin{array}{l} \displaystyle\frac{{\partial G({{\bm r}_m},{{\bm r}^{\prime}_n})}}{{\partial {{\bm n}_{{{\bm r}^{\prime}_n}}}}}...…”
Section: Rmfs With Excitation Sourcementioning
confidence: 99%
“…Therefore, a RMFS for solving diagonal values is given. For the TM mode, G(r m ,r m ) can be given by the following equation [19]:…”
mentioning
confidence: 99%