2022
DOI: 10.1038/s41587-022-01351-w
|View full text |Cite
|
Sign up to set email alerts
|

A red light–responsive photoswitch for deep tissue optogenetics

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
27
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 32 publications
(28 citation statements)
references
References 59 publications
0
27
0
Order By: Relevance
“…This is equally true for light-responsive TCSs e.g., (Levskaya et al, 2005;Möglich et al, 2009;Multamäki et al, 2022), and oligomerization-based setups e.g., (Chen et al, 2016;Li et al, 2020;Dietler et al, 2021;Kaberniuk et al, 2021;Romano et al, 2021), either of which can be altered by substituting one photosensor module for another. The latter category stands to benefit from years of basic research and genome mining that provided diverse photoreceptor pairs that associate or dissociate upon light exposure (Strauss et al, 2005;Guntas et al, 2015;Wang et al, 2016;Redchuk et al, 2017;Kuwasaki et al, 2022). Promisingly, recent reports demonstrated the functional expression of plant phytochromes (Raghavan et al, 2020) and cryptochromes (McQuillen et al, 2022) in E. coli, thus raising the prospect of bacterial use of these photoreceptors which underpin manifold and highly stringent optogenetic systems in mammalian cells.…”
Section: Perspectivesmentioning
confidence: 99%
“…This is equally true for light-responsive TCSs e.g., (Levskaya et al, 2005;Möglich et al, 2009;Multamäki et al, 2022), and oligomerization-based setups e.g., (Chen et al, 2016;Li et al, 2020;Dietler et al, 2021;Kaberniuk et al, 2021;Romano et al, 2021), either of which can be altered by substituting one photosensor module for another. The latter category stands to benefit from years of basic research and genome mining that provided diverse photoreceptor pairs that associate or dissociate upon light exposure (Strauss et al, 2005;Guntas et al, 2015;Wang et al, 2016;Redchuk et al, 2017;Kuwasaki et al, 2022). Promisingly, recent reports demonstrated the functional expression of plant phytochromes (Raghavan et al, 2020) and cryptochromes (McQuillen et al, 2022) in E. coli, thus raising the prospect of bacterial use of these photoreceptors which underpin manifold and highly stringent optogenetic systems in mammalian cells.…”
Section: Perspectivesmentioning
confidence: 99%
“…Green light activates bacterial transcription factor CarH (~525 nm), requiring cyanocobalamin (vitamin B12) [ 16 ] and the dissociation of PCB-dependent cyanobacteriochrome Am1_c0023g2 (~525 nm) and its partner BAm green [ 17 ]. Far-red (650–750) light activates the binding of PCB-dependent phytochrome B (PhyB) to PIF3 [ 18 ] or PIF6 [ 19 ]; biliverdin-dependent photosensors include c-di-GMP-producing BphS (~730 nm) [ 20 ], MagRed pair [ 21 ] (~660 nm) and oligomerizing iLight [ 22 ] (~660 nm). Near-infrared (NIR) light (750–900 nm) activates biliverdin-dependent bacteriophytochrome-based Rp BphP1-PpsR2 [ 23 ] and Rp BphP1-QPAS1 [ 2 ] (~780 nm) pairs.…”
Section: Introductionmentioning
confidence: 99%
“…Gene expression during development, homeostatic maintenance and environmental responses in living cells is highly dynamic. To understand the functional significance of dynamic gene expression changes, light-controllable gene expression systems have been developed and are being continuously updated (Crefcoeur et al, 2013;Hallett et al, 2016;Hörner et al, 2017;Konermann et al, 2013;Motta-Mena et al, 2014;Pathak et al, 2017;Polstein and Gersbach, 2012;Shimizu-Sato et al, 2002;Wang et al, 2012;Yazawa et al, 2009;Quejada et al, 2017;Yamada et al, 2018;Liu et al, 2012;Müller et al, 2013b;Zhou et al, 2022;Yamada et al, 2020;Kasatkina et al, 2022;Kuwasaki et al, 2022). Light-controlled gene expression systems are versatile tools to manipulate cellular functions at fine spatiotemporal resolution (Imayoshi et al, 2013;Chan et al, 2015;Nihongaki et al, 2017;Isomura et al, 2017;Shao et al, 2018;Yoshioka-Kobayashi et al, 2020;Zhou et al, 2022).…”
Section: Introductionmentioning
confidence: 99%
“…Recently, various types of photo-activatable (PA) molecules such as Cry2-CIB1 (Kennedy et al, 2010;Aoki et al, 2017;Taslimi et al, 2016;Quejada et al, 2017), Vivid (VVD) (Wang et al, 2012), Magnet (Kawano et al, 2015;di Pietro et al, 2021), tunable light-controlled interacting protein tags (TULIPs) (Strickland et al, 2012), and original light-inducible dimer/improved light-inducible dimer (oLID/iLID) (Guntas et al, 2015;Hallett et al, 2016) have been incorporated to the Gal4/UAS system to develop blue-light inducible PA-gene expression systems. In addition, optical switches responsive to other wavelengths of light such as ultraviolet (Müller et al, 2013a) or near-infrared (Kaberniuk et al, 2016;Redchuk et al, 2017;Kasatkina et al, 2022;Kuwasaki et al, 2022) light, have been integrated for multi-wavelength controls of gene expression systems including the Gal4/UAS system.…”
Section: Introductionmentioning
confidence: 99%