2021
DOI: 10.1590/1806-9126-rbef-2021-0034
|View full text |Cite
|
Sign up to set email alerts
|

A quarta dimensão: da sua natureza espacial na geometria euclidiana à componente tipo tempo de variedades não euclidianas

Abstract: Neste artigo, apresenta-se a evolução das ideias sobre a quarta dimensão espacial, partindo daquelas que surgem da geometria euclidiana clássica e abordando, em seguida, as que resultam do âmbito das geometrias não euclidianas, como as de Riemann e Minkowski. Particular atenção é dada ao momento no qual o tempo real passa efetivamente a ser considerado como uma quarta dimensão, conforme introduzido por Einstein.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 11 publications
0
0
0
Order By: Relevance
“…Euclidean is typically applied to two and three dimensions to analyze the correlation between distances. However, it can also be applied to dimensions beyond the fourth (Bassalo et al, 2021). For two data points x and y in d-dimensional space, the Euclidean distance is the most common distance used for numerical data.…”
Section: Introductionmentioning
confidence: 99%
“…Euclidean is typically applied to two and three dimensions to analyze the correlation between distances. However, it can also be applied to dimensions beyond the fourth (Bassalo et al, 2021). For two data points x and y in d-dimensional space, the Euclidean distance is the most common distance used for numerical data.…”
Section: Introductionmentioning
confidence: 99%