2022
DOI: 10.48550/arxiv.2203.01212
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Quantitative Geometric Approach to Neural Network Smoothness

Abstract: Fast and precise Lipschitz constant estimation of neural networks is an important task for deep learning. Researchers have recently found an intrinsic trade-off between the accuracy and smoothness of neural networks, so training a network with a loose Lipschitz constant estimation imposes a strong regularization and can hurt the model accuracy significantly. In this work, we provide a unified theoretical framework, a quantitative geometric approach, to address the Lipschitz constant estimation. By adopting thi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?