2017
DOI: 10.1002/2016jf003932
|View full text |Cite
|
Sign up to set email alerts
|

A predictive model for the spectral “bioalbedo” of snow

Abstract: We present the first physical model for the spectral “bioalbedo” of snow, which predicts the spectral reflectance of snowpacks contaminated with variable concentrations of red snow algae with varying diameters and pigment concentrations and then estimates the effect of the algae on snowmelt. The biooptical model estimates the absorption coefficient of individual cells; a radiative transfer scheme calculates the spectral reflectance of snow contaminated with algal cells, which is then convolved with incoming sp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

5
75
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 66 publications
(81 citation statements)
references
References 77 publications
5
75
0
1
Order By: Relevance
“…The generation of meltwater through microbes' albedoreducing properties motivates an hypothesis of bio-geophysical feedback on glacial landscapes 13,16 , such as the Greenland ice sheet. This feedback hypothesis, whereby microbes increase because they produce needed meltwater, is an active research area [13][14][15][16][17][18][19] , yet field experiments testing its assumptions are absent.Glacier microbiomes are water-limited 21,22 , because ice is generally not metabolically available, and oligotrophic, because their nutrient content equals that of precipitation plus deposition by airborne dust, pollen, and so on, with only limited N-fixation by local cyanobacteria 21,22 . Moreover, rapidly percolating water through large-grained snow may exacerbate both water-and nutrient limitation for algae in supraglacial snow-covered habitat 7 .…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…The generation of meltwater through microbes' albedoreducing properties motivates an hypothesis of bio-geophysical feedback on glacial landscapes 13,16 , such as the Greenland ice sheet. This feedback hypothesis, whereby microbes increase because they produce needed meltwater, is an active research area [13][14][15][16][17][18][19] , yet field experiments testing its assumptions are absent.Glacier microbiomes are water-limited 21,22 , because ice is generally not metabolically available, and oligotrophic, because their nutrient content equals that of precipitation plus deposition by airborne dust, pollen, and so on, with only limited N-fixation by local cyanobacteria 21,22 . Moreover, rapidly percolating water through large-grained snow may exacerbate both water-and nutrient limitation for algae in supraglacial snow-covered habitat 7 .…”
mentioning
confidence: 99%
“…The generation of meltwater through microbes' albedoreducing properties motivates an hypothesis of bio-geophysical feedback on glacial landscapes 13,16 , such as the Greenland ice sheet. This feedback hypothesis, whereby microbes increase because they produce needed meltwater, is an active research area [13][14][15][16][17][18][19] , yet field experiments testing its assumptions are absent.…”
mentioning
confidence: 99%
“…These efforts are complicated by the difficulty in separating abiotic albedo from biologically induced darkening, or bio-albedo, as well as a paucity of data on snow algae distribution and density. However, a recently developed spectral model for bio-albedo which includes snow physical properties and meteorological data indicates that algal blooms can influence snowpack albedo and melt rate [19]. The model indicated that algae biomass has a greater effect than pigment concentration, suggesting a positive correlation between supraglacial algal blooms and accelerated melt.…”
mentioning
confidence: 99%
“…In Sierra Nevada snowfields, snow algae abundance was negatively correlated to surface albedo [15] and a recent study quantified the role of snow algae communities in snowmelt on an icefield in Alaska [16]. Similarly, in the Arctic, red algal blooms darken the snow/ice surface, lowering surface albedo (by as much as 13% over the melt season) [17] and increasing melt rates [18,19].…”
mentioning
confidence: 99%
See 1 more Smart Citation