2001
DOI: 10.1149/1.1415031
|View full text |Cite
|
Sign up to set email alerts
|

A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell

Abstract: A steady-state, two-dimensional model is presented and discussed that describes the water transport in a proton exchange membrane fuel cell. Concentrated solution theory is used to describe the transport of water in the membrane, and of water vapor and liquid water in the electrodes. The inclusion of the liquid water transport into the model turned out to be essential for explaining recent experimental results on the effective drag coefficient and its dependence on operating conditions as well as on variations… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
145
0
2

Year Published

2004
2004
2015
2015

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 156 publications
(149 citation statements)
references
References 19 publications
(46 reference statements)
2
145
0
2
Order By: Relevance
“…The detailed electrochemical treatment usually limits the mathematical treatment to one-dimension (through the thickness of the cell) [5,6] or two-dimensions (through-the thickness of the cell and along the channel length) [7,8,9,10,11].…”
Section: Electrochemical Treatmentsmentioning
confidence: 99%
See 1 more Smart Citation
“…The detailed electrochemical treatment usually limits the mathematical treatment to one-dimension (through the thickness of the cell) [5,6] or two-dimensions (through-the thickness of the cell and along the channel length) [7,8,9,10,11].…”
Section: Electrochemical Treatmentsmentioning
confidence: 99%
“…Electrochemical treatments are well-suited to generating an understanding of multi-phase transport and cross-flow through multiple layers of the cell [4], the effects of porous layer compression [12], effects of PEM water uptake including Schroeder's paradox [13], PEM expansion and PEM constraint [14], water vapour transport [11] and the effect of highly wet-proofed assemblies on cell performance such as the microporous layer (MPL) [15]. Electrochemical treatments cannot detail the movement of individual components or phases through actual porous geometries of PEFC structures on their own.…”
Section: Electrochemical Treatmentsmentioning
confidence: 99%
“…Com isso, a difusão de pró-tons ocorre através desses canais pelos mesmos mecanismos pelos quais ocorre em água pura. Portanto, a condutividade é dependente da química do próton e é normalmente explicada através de dois mecanismos de difusão já bastante conhecidos pelos químicos [8,10,11,26,27] . São eles: I) difusão estrutural (mecanismo de Grotthuss) e II) difusão veicular.…”
Section: Nafion ®unclassified
“…Durante a operação da célula a combustível, dois fatores contribuem para a geração de um gradiente de concentração ao longo da membrana: I) fluxo eletro-osmótico e II) geração de água no cátodo como produto de reação da célula [27,30] . No entanto, a diferença de "concentração" de água entre as duas meia-células, gerado por esses dois fatores, é responsável pela força-motriz de difusão da água no sentido contrário ao fluxo eletro-osmótico (difusão de retorno ou "back difusion"), fenômeno que auxilia a manutenção da umidade e sua homogeneidade na membrana, minimizando os efeitos negativos da desidratação local no ânodo, resultante do fluxo eletro-osmótico.…”
Section: Difusão De Retornounclassified
“…While multiple dilute solution approaches have been used for the various water contents, the concentrated-solutiontheory approach and equations are independent of the water content. The key is using the correct parameter values and in the interpretation of the single driving force of chemical potential [3,91,97]. This driving force combines those of pressure and activity The figure demonstrates a maximum penetration depth of liquid water into the membrane near the air inlet.…”
Section: K Pmentioning
confidence: 99%