2010
DOI: 10.1016/j.jcp.2009.12.024
|View full text |Cite
|
Sign up to set email alerts
|

A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
18
0
5

Year Published

2010
2010
2019
2019

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 27 publications
(23 citation statements)
references
References 44 publications
0
18
0
5
Order By: Relevance
“…Results are summarized in Table 1. The first problems arise in the computation of the electronic structure of quantum dots via discretization of the Schrödinger equation [19]. The rest belong to the NLEVP collection [8], all of them polynomial eigenproblems except the last one (loaded string) which is a rational eigenproblem that we have used to illustrate how general nonlinear eigenproblems can be solved via polynomial interpolation.…”
Section: Numerical Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…Results are summarized in Table 1. The first problems arise in the computation of the electronic structure of quantum dots via discretization of the Schrödinger equation [19]. The rest belong to the NLEVP collection [8], all of them polynomial eigenproblems except the last one (loaded string) which is a rational eigenproblem that we have used to illustrate how general nonlinear eigenproblems can be solved via polynomial interpolation.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…Projection methods for large-scale polynomial eigenvalue problems may opt to project the problem directly by imposing a Galerkin-type condition on the residual associated with the polynomial eigenproblem, see, e.g., [18,19,5]. An alternative approach is to apply a standard projection method such as Arnoldi to the linearization of the matrix polynomial.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Table 1 summarizes the test cases, providing information about the degree of the polynomial, the matrix size, the number of requested eigenpairs and the target value around which eigenvalues are sought. The first problems arise in the computation of the electronic structure of quantum dots via discretization of the Schrödinger equation [13]. The rest belong to the NLEVP collection [5].…”
Section: Computational Resultsmentioning
confidence: 99%
“…Considerando un vector w ortogonal al residuo, w * P (µ)u = 0, y multiplicando la ecuación anterior por w * , se obtiene una expresión para ∆λ, que al ser sustituida en (1.21), y dado que t = (I − uu * )t, produce la ecuación de corrección del método de Jacobi-Davidson (1.20). Una de las opciones que con más frecuencia se escogen para el subespacio de test [16,91,64,48,46] es la de hacerlo coincidir con el de búsqueda (proyección ortogonal). Otras opciones para W dan distintas propiedades de convergencia [27,83,81].…”
Section: Jacobi-davidsonunclassified