1979
DOI: 10.1016/0021-9991(79)90070-6
|View full text |Cite
|
Sign up to set email alerts
|

A numerical solution of a model for a superconductor field problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
1
2

Year Published

1982
1982
1999
1999

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 27 publications
(14 citation statements)
references
References 2 publications
0
10
1
2
Order By: Relevance
“…Our method is compared with the Alsop method [2], FastHenry [4] and Chang formula [7] in a 2D stripline (table 1). The results of our method agree well with those of the Alsop method and those of FastHenry for all the aspect Table 1.…”
Section: Superconducting Striplinementioning
confidence: 99%
See 2 more Smart Citations
“…Our method is compared with the Alsop method [2], FastHenry [4] and Chang formula [7] in a 2D stripline (table 1). The results of our method agree well with those of the Alsop method and those of FastHenry for all the aspect Table 1.…”
Section: Superconducting Striplinementioning
confidence: 99%
“…The method of images is used to avoid discretizing a large superconducting GP, which is time as well as memory consuming. Many papers have used the method of images previously [2][3][4]. However, to our knowledge the position of the mirror plane remains unknown analytically.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Le couplage magnétique des lignes entre elles et sur le circuit se traduit par la matrice inductance. En 1979, Alsop et al [4] ont proposé une méthode de différences finies permettant de déterminer la configuration du champ magnétique pour un ensemble de lignes supraconductrices sur plan de masse. Leur méthode suppose qu'il n'y a pas de pénétration dans le plan de masse et nécessite l'introduction de frontières autour du système étudié; elle n'est pas très bien adaptée aux structures illimitées.…”
Section: Introduction -La Commutation D'une Jonctionunclassified
“…Compte tenu de la relation (14) la matrice inductance s'obtient par inversion de la matrice [P] : Lorsque l'on fixe les conditions d'excitation de chaque ligne, la matrice courant [I] est connue et les densités de courant dans les conducteurs s'obtiennent à partir des relations (21), (20) et (16). 4. Champ magnétique.…”
Section: Introduction -La Commutation D'une Jonctionunclassified