In this paper, we investigate the electrical characteristics of two trench‐gate‐type super‐barrier rectifiers (TSBRs) under different p‐body implantation conditions (low and high). Also, design considerations for the TSBRs are discussed in this paper. The TSBRs’ electrical properties depend strongly on their respective p‐body implantation conditions. In the case of the TSBR with a low p‐body implantation condition, it exhibits MOSFET‐like properties, such as a low forward voltage (VF) drop, high reverse leakage current, and a low peak reverse recovery current owing to a majority carrier operation. However, in the case of the TSBR with a high p‐body implantation condition, it exhibits pn junction diode–like properties, such as a high VF, low reverse leakage current, and high peak reverse recovery current owing to a minority carrier operation. As a result, the TSBR with a low p‐body implantation condition is capable of operating as a MOSFET, and the TSBR with a high p‐body implantation condition is capable of operating as either a pn junction diode or a MOSFET, but not both at the same time.