2019
DOI: 10.1016/j.physa.2019.122584
|View full text |Cite
|
Sign up to set email alerts
|

A novel and accurate chess pattern for automated texture classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2020
2020
2021
2021

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 51 publications
0
4
0
2
Order By: Relevance
“…In this section, the existing feature descriptors namely Chess Pattern (CP) [57], Local Gradient Coding (LGC) [55] and its variants are presented.…”
Section: Existing Feature Descriptorsmentioning
confidence: 99%
See 2 more Smart Citations
“…In this section, the existing feature descriptors namely Chess Pattern (CP) [57], Local Gradient Coding (LGC) [55] and its variants are presented.…”
Section: Existing Feature Descriptorsmentioning
confidence: 99%
“…Tuncer et al [57] proposed CP, a local texture-based feature descriptor, developed using chess game rules for texture recognition. With reference to the center pixel (G c ) in a 5 × 5 neighborhood, CP logically places chessmen (Rook, Bishop and Knight) in possible positions following chess game rules.…”
Section: Cpmentioning
confidence: 99%
See 1 more Smart Citation
“…The need to design an effective local texture descriptor with high discrimination capability is no longer to be demonstrated. Indeed, the development of methods based on local texture descriptors in pattern recognition continue to be designed still today, e.g., median local ternary patterns (MLTP) [50], averaged local binary patterns (ALBP) [58], repulsive-andattractive local binary gradient contours (RALBGC) [52], local concave-and-convex micro-structure (LCCMSP) [49], attractive-and-repulsive center-symmetric local binary patterns (ARCS-LBP) [63], multi-direction local binary pattern (MDLBP) [64], improved local ternary patterns (ILTP) [55], quaternionic local angular binary pattern (QLABP) [61], selectively dominant local binary patterns (SDLBP) [62], chess pattern (Chess-pat) [59], multi level directional cross binary patterns (MLD-CBP) [60], synchronized rotation local ternary pattern (SRLTP) [38], oriented star sampling structure based multi-scale ternary pattern (O3S-MTP) [40], pattern of local gravitational force (PLGF) [39] and so on. Even though LBP and its modifications and extensions achieve satisfactory performance, still an alternative technique to enhance the discriminative power in an image for effective texture modeling and representation is essential.…”
Section: Introductionmentioning
confidence: 99%
“…En la literatura, se han propuesto recientemente muchos descriptores para el análisis de la textura, por ejemplo, en (Ouslimani et al, 2019) se propuso un des-criptor de textura invariante a la rotaci ón para abordar la tarea de clasificaci ón, y Pham (2018) introdujeron un método para la recuperaci ón de la textura utilizando la extracci ón de características multiescala. Para el reconocimiento de imágenes de textura, Tuncer, Dogan and Ertam (2019) utilizaron una red neuronal para la extracci ón de características de textura, y más tarde, introdujeron un novedoso descriptor de imagen local (Tuncer, Dogan and Ataman, 2019) para la extracci ón de características de textura inspirado en el juego de ajedrez. El objetivo principal de todos estos trabajos es satisfacer las demandas de ciertas aplicaciones con respecto a CBIR.…”
Section: Descriptores Para La Recuperaci óN De Texturasunclassified