2023
DOI: 10.1063/5.0185772
|View full text |Cite
|
Sign up to set email alerts
|

A novel analysis of Cole–Hopf transformations in different dimensions, solitons, and rogue waves for a (2 + 1)-dimensional shallow water wave equation of ion-acoustic waves in plasmas

Sachin Kumar,
Brij Mohan

Abstract: This work investigates a (2 + 1)-dimensional shallow water wave equation of ion-acoustic waves in plasma physics. It comprehensively analyzes Cole–Hopf transformations concerning dimensions x, y, and t and obtains the dispersion for a phase variable of this equation. We show that the soliton solutions are independent of the different logarithmic transformations for the investigated equation. We also explore the linear equations in the auxiliary function f present in Cole–Hopf transformations. We study this equ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 18 publications
(1 citation statement)
references
References 61 publications
0
1
0
Order By: Relevance
“…For deeper consideration of nonlinear occurrence and realistic challenges, it is essential to discover closed-form soliton solutions of SFPDEs. According to the quick advancements in nonlinear sciences, a variety of simple and efficient approaches have been developed to obtain closed-form soliton solutions to NLPDEs, including the Hirota method [4,5], the Bernoulli sub-equation method [6,7], the F-expansion method [8], the (G ′ /G 2 )-expansion method [9], the simple equation method [10], the modified auxiliary equation method [11,12], the two variable (G ′ /G, 1/G)-expansion method [13][14][15][16], the Lie symmetric analysis [17], the polynomial complete discriminant system [18], the tanh-coth scheme [19], the Conservation laws method [20], the generalized exponential rational function approach [21,22], the binary bell polynomials method [23], the mapping method [24], the Shehu transform scheme [25], the sine-Gordon expansion [26], the Cole-Hopf transformation method [27,28], the Fan subequation technique [29], the unified method [30], the Khater method [31], the r + mEDAM method [32], the spectral Tau method [33], the G ′ G ′ +G+A -expansion procedure [34][35][36][37][38], the sub-equation method [39], the collocation method [40], the finite element method [41], and the generalized G ′ /G-expansion method …”
Section: Introductionmentioning
confidence: 99%
“…For deeper consideration of nonlinear occurrence and realistic challenges, it is essential to discover closed-form soliton solutions of SFPDEs. According to the quick advancements in nonlinear sciences, a variety of simple and efficient approaches have been developed to obtain closed-form soliton solutions to NLPDEs, including the Hirota method [4,5], the Bernoulli sub-equation method [6,7], the F-expansion method [8], the (G ′ /G 2 )-expansion method [9], the simple equation method [10], the modified auxiliary equation method [11,12], the two variable (G ′ /G, 1/G)-expansion method [13][14][15][16], the Lie symmetric analysis [17], the polynomial complete discriminant system [18], the tanh-coth scheme [19], the Conservation laws method [20], the generalized exponential rational function approach [21,22], the binary bell polynomials method [23], the mapping method [24], the Shehu transform scheme [25], the sine-Gordon expansion [26], the Cole-Hopf transformation method [27,28], the Fan subequation technique [29], the unified method [30], the Khater method [31], the r + mEDAM method [32], the spectral Tau method [33], the G ′ G ′ +G+A -expansion procedure [34][35][36][37][38], the sub-equation method [39], the collocation method [40], the finite element method [41], and the generalized G ′ /G-expansion method …”
Section: Introductionmentioning
confidence: 99%