2005
DOI: 10.1090/s0002-9939-05-07985-2
|View full text |Cite
|
Sign up to set email alerts
|

A note on the special unitary group of a division algebra

Abstract: Abstract. If D is a division algebra with center a number field K and with an involution of the second kind, it is unknown if the group D)] is trivial. We show that, by contrast, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group SU (1, D)/[U (1, D), U (1, D)] can be infinite in general. We give an infinite class of examples.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2008
2008
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 7 publications
0
1
0
1
Order By: Relevance
“…2. In [31] Sethuraman and Sury proved that for the special symbol algebras D the group SUK an 1 (D, τ ) is infinite.…”
Section: § 1 Introduction and Statements Of The Main Resultsmentioning
confidence: 99%
“…2. In [31] Sethuraman and Sury proved that for the special symbol algebras D the group SUK an 1 (D, τ ) is infinite.…”
Section: § 1 Introduction and Statements Of The Main Resultsmentioning
confidence: 99%
“…Однако если в случае изотропных групп имеется развитая теория, описывающая их свойства, то в анизотропном случае проблема описания приведенных групп Уайтхеда остается, несмотря на более 30-летнюю историю ее существования и пристальное внимание к ней специалистов, мало приступной. К настоящему времени в литературе известны лишь три результата, связанных с конкретными алгебрами D [1][2][3]. Поэтому важным является рассмотрение классов специальных алгебр над гензелевыми полями k как полигона для получения новых гипотез о структуре и свойствах групп SUK 1 an (D, τ).…”
unclassified
“…We shall prove some results for general k and later specialize to global fields to get more complete results applying a theorem of Margulis [2]. In contrast with the case of global fields, it was proved in [7] that, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group SU (1, D)/[U (1, D), U (1, D)] can be infinite in general; we gave an infinite class of such examples. We believe that the results of this note would be known to experts but it has not been set down in print.…”
mentioning
confidence: 99%