Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We prove existence and uniqueness of a solution to the Cauchy problem corresponding to the dynamics capillarity equation $$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u_{\varepsilon ,\delta } +\mathrm {div} {\mathfrak f}_{\varepsilon ,\delta }(\mathbf{x}, u_{\varepsilon ,\delta })=\varepsilon \Delta u_{\varepsilon ,\delta }+\delta (\varepsilon ) \partial _t \Delta u_{\varepsilon ,\delta }, \ \ \mathbf{x} \in M, \ \ t\ge 0\\ u|_{t=0}=u_0(\mathbf{x}). \end{array}\right. } \end{aligned}$$ ∂ t u ε , δ + div f ε , δ ( x , u ε , δ ) = ε Δ u ε , δ + δ ( ε ) ∂ t Δ u ε , δ , x ∈ M , t ≥ 0 u | t = 0 = u 0 ( x ) . Here, $${{\mathfrak {f}}}_{\varepsilon ,\delta }$$ f ε , δ and $$u_0$$ u 0 are smooth functions while $$\varepsilon $$ ε and $$\delta =\delta (\varepsilon )$$ δ = δ ( ε ) are fixed constants. Assuming $${{\mathfrak {f}}}_{\varepsilon ,\delta } \rightarrow {{\mathfrak {f}}}\in L^p( {\mathbb {R}}^d\times {\mathbb {R}};{\mathbb {R}}^d)$$ f ε , δ → f ∈ L p ( R d × R ; R d ) for some $$1<p<\infty $$ 1 < p < ∞ , strongly as $$\varepsilon \rightarrow 0$$ ε → 0 , we prove that, under an appropriate relationship between $$\varepsilon $$ ε and $$\delta (\varepsilon )$$ δ ( ε ) depending on the regularity of the flux $${{\mathfrak {f}}}$$ f , the sequence of solutions $$(u_{\varepsilon ,\delta })$$ ( u ε , δ ) strongly converges in $$L^1_{loc}({\mathbb {R}}^+\times {\mathbb {R}}^d)$$ L loc 1 ( R + × R d ) toward a solution to the conservation law $$\begin{aligned} \partial _t u +\mathrm {div} {{\mathfrak {f}}}(\mathbf{x}, u)=0. \end{aligned}$$ ∂ t u + div f ( x , u ) = 0 . The main tools employed in the proof are the Leray–Schauder fixed point theorem for the first part and reduction to the kinetic formulation combined with recent results in the velocity averaging theory for the second. These results have the potential to generate a stable semigroup of solutions to the underlying scalar conservation laws different from the Kruzhkov entropy solutions concept.
We prove existence and uniqueness of a solution to the Cauchy problem corresponding to the dynamics capillarity equation $$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u_{\varepsilon ,\delta } +\mathrm {div} {\mathfrak f}_{\varepsilon ,\delta }(\mathbf{x}, u_{\varepsilon ,\delta })=\varepsilon \Delta u_{\varepsilon ,\delta }+\delta (\varepsilon ) \partial _t \Delta u_{\varepsilon ,\delta }, \ \ \mathbf{x} \in M, \ \ t\ge 0\\ u|_{t=0}=u_0(\mathbf{x}). \end{array}\right. } \end{aligned}$$ ∂ t u ε , δ + div f ε , δ ( x , u ε , δ ) = ε Δ u ε , δ + δ ( ε ) ∂ t Δ u ε , δ , x ∈ M , t ≥ 0 u | t = 0 = u 0 ( x ) . Here, $${{\mathfrak {f}}}_{\varepsilon ,\delta }$$ f ε , δ and $$u_0$$ u 0 are smooth functions while $$\varepsilon $$ ε and $$\delta =\delta (\varepsilon )$$ δ = δ ( ε ) are fixed constants. Assuming $${{\mathfrak {f}}}_{\varepsilon ,\delta } \rightarrow {{\mathfrak {f}}}\in L^p( {\mathbb {R}}^d\times {\mathbb {R}};{\mathbb {R}}^d)$$ f ε , δ → f ∈ L p ( R d × R ; R d ) for some $$1<p<\infty $$ 1 < p < ∞ , strongly as $$\varepsilon \rightarrow 0$$ ε → 0 , we prove that, under an appropriate relationship between $$\varepsilon $$ ε and $$\delta (\varepsilon )$$ δ ( ε ) depending on the regularity of the flux $${{\mathfrak {f}}}$$ f , the sequence of solutions $$(u_{\varepsilon ,\delta })$$ ( u ε , δ ) strongly converges in $$L^1_{loc}({\mathbb {R}}^+\times {\mathbb {R}}^d)$$ L loc 1 ( R + × R d ) toward a solution to the conservation law $$\begin{aligned} \partial _t u +\mathrm {div} {{\mathfrak {f}}}(\mathbf{x}, u)=0. \end{aligned}$$ ∂ t u + div f ( x , u ) = 0 . The main tools employed in the proof are the Leray–Schauder fixed point theorem for the first part and reduction to the kinetic formulation combined with recent results in the velocity averaging theory for the second. These results have the potential to generate a stable semigroup of solutions to the underlying scalar conservation laws different from the Kruzhkov entropy solutions concept.
We consider the Novikov and Camass-Holm equations, which contain nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solution of the dispersive equation converges to the unique entropy solution of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L p setting.
We prove existence and uniqueness of a solution to the Cauchy problem corresponding to the equationHere, f ε,δ and u 0 are smooth functions while ε and δ = δ(ε) are fixed constants. Assuming f ε,δ → f ∈ L p (R d ×R; R d ) for some 1 < p < ∞, strongly as ε → 0, we prove that, under an appropriate relationship between ε and δ(ε) depending on the regularity of the flux f, the sequence of solutions (u ε,δ ) strongly converges in L 1 loc (R + × R d ) towards a solution to the conservation law ∂tu + divf(x, u) = 0.The main tools employed in the proof are the Leray-Schauder fixed point theorem for the first part and reduction to the kinetic formulation combined with recent results in the velocity averaging theory for the second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.