2019
DOI: 10.5114/jcb.2019.82716
|View full text |Cite
|
Sign up to set email alerts
|

A nomogram to determine required seed air kerma strength in planar Cesium-131 permanent seed implant brachytherapy

Abstract: PurposeIntraoperatively implanted Cesium-131 (131Cs) permanent seed brachytherapy is used to deliver highly localized re-irradiation in recurrent head and neck cancers. A single planar implant of uniform air kerma strength (AKS) seeds and 10 mm seed-to-seed spacing is used to deliver the prescribed dose to a point 5 mm or 10 mm perpendicular to the center of the implant plane. Nomogram tables to quickly determine the required AKS for rectangular and irregularly shaped implants were created and dosimetrically v… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 24 publications
0
4
0
Order By: Relevance
“…Most low-dose-rate brachytherapy software programs are capable of calculating a basic treatment plan or secondary dose verification for this procedure. Additionally, a nomogram may be an acceptable substitute for a secondary dose calculation in lieu of a formal dose calculation [28]. Point dose dosimetry was applied uniformly to all pre- and post-planning due to the nature of source placement and the inability to accurately decipher source orientation on post-implant imaging.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Most low-dose-rate brachytherapy software programs are capable of calculating a basic treatment plan or secondary dose verification for this procedure. Additionally, a nomogram may be an acceptable substitute for a secondary dose calculation in lieu of a formal dose calculation [28]. Point dose dosimetry was applied uniformly to all pre- and post-planning due to the nature of source placement and the inability to accurately decipher source orientation on post-implant imaging.…”
Section: Discussionmentioning
confidence: 99%
“…The seed air kerma strength was iteratively adjusted in the planning software, such that a dose of 60 Gy was delivered to a prescription located 5 mm perpendicular to the center of the implant plane. Planning details have previously been reported [28]. The treatment plan was reviewed by the medical physicist, radiation oncologist, and otorhinolaryngology surgeon.…”
Section: Methodsmentioning
confidence: 99%
“…Pre-implant dosimetry was performed to estimate the number and air kerma strength of seeds required to deliver the prescribed dose to the estimated resection cavity [17]. All patients received a post-implant computed tomography (CT; slice thickness, 0.7-2.0 mm) on a Philips Brilliance 64 or iCT 256, using O-MAR artifact reduction when available.…”
Section: Methodsmentioning
confidence: 99%
“…A point-dose model following the American Association of Physicists in Medicine’s TG-43 dose calculation formalism was used [19]. Details of the pre- and post-implant dosimetry are described in another publication [17]. Inter-seed attenuation effects were not included in the dose calculation [20].…”
Section: Methodsmentioning
confidence: 99%