Purpose: The purpose of this study was to preliminarily estimate patient-specific organ doses in chest CT examinations for Chinese adults, and to investigate the effect of patient size on organ doses. Methods: By considering the body-size and body-build effects on the organ doses and taking the mid-chest water equivalent diameter (WED) as a body-size indicator, the chest scan images of 18 Chinese adults were acquired on a multi-detector CT to generate the regional voxel models. For each patient, the lungs, heart, and breasts (glandular breast tissues for both breasts) were segmented, and other organs were semi-automated segmented based on their HU values. The CT scanner and patient models simulated by MCNPX 2.4.0 software (Los Alamos National LaboratoryLos Alamos, USA) were used to calculate lung, breast, and heart doses. CTDIvol values were used to normalize simulated organ doses, and the exponential estimation model between the normalized organ dose and WED was investigated. Results: Among the 18 patients in this study, the simulated doses of lung, heart, and breast were 18.15 ± 2.69 mGy, 18.68 ± 2.87 mGy, and 16.11 ± 3.08 mGy, respectively. Larger patients received higher organ doses than smaller ones due to the higher tube current used. The ratios of lung, heart, and breast doses to the CTDIvol were 1.48 ± 0.22, 1.54 ± 0.20, and 1.41 ± 0.13, respectively. The normalized organ doses of all the three organs decreased with the increase in WED, and the normalized doses decreased more obviously in the lung and the heart than that in the breasts. Conclusions: The output of CT scanner under ATCM is positively related to the attenuation of patients, larger-size patients receive higher organ doses. The organ dose normalized by CTDIvol was negatively correlated with patient size. The organ doses could be estimated by using the indicated CTDIvol combined with the estimated WED.